全文获取类型
收费全文 | 2278篇 |
免费 | 7篇 |
国内免费 | 3篇 |
专业分类
航空 | 1227篇 |
航天技术 | 832篇 |
综合类 | 13篇 |
航天 | 216篇 |
出版年
2018年 | 25篇 |
2017年 | 23篇 |
2014年 | 24篇 |
2013年 | 48篇 |
2012年 | 28篇 |
2011年 | 59篇 |
2010年 | 47篇 |
2009年 | 57篇 |
2008年 | 126篇 |
2007年 | 38篇 |
2006年 | 32篇 |
2005年 | 46篇 |
2004年 | 69篇 |
2003年 | 72篇 |
2002年 | 37篇 |
2001年 | 55篇 |
2000年 | 49篇 |
1999年 | 27篇 |
1998年 | 75篇 |
1997年 | 53篇 |
1996年 | 62篇 |
1995年 | 69篇 |
1994年 | 85篇 |
1993年 | 51篇 |
1992年 | 69篇 |
1991年 | 29篇 |
1990年 | 33篇 |
1989年 | 70篇 |
1988年 | 24篇 |
1987年 | 29篇 |
1986年 | 51篇 |
1985年 | 87篇 |
1984年 | 54篇 |
1983年 | 60篇 |
1982年 | 57篇 |
1981年 | 69篇 |
1980年 | 34篇 |
1979年 | 27篇 |
1978年 | 25篇 |
1977年 | 24篇 |
1975年 | 24篇 |
1974年 | 24篇 |
1973年 | 24篇 |
1972年 | 21篇 |
1971年 | 31篇 |
1970年 | 17篇 |
1969年 | 25篇 |
1968年 | 18篇 |
1967年 | 20篇 |
1966年 | 19篇 |
排序方式: 共有2288条查询结果,搜索用时 15 毫秒
41.
V. A. Sadovnichiy A. M. Amelyushkin V. Angelopoulos V. V. Bengin V. V. Bogomolov G. K. Garipov E. S. Gorbovskoy B. Grossan P. A. Klimov B. A. Khrenov J. Lee V. M. Lipunov G. W. Na M. I. Panasyuk I. H. Park V. L. Petrov C. T. Russell S. I. Svertilov E. A. Sigaeva G. F. Smoot Yu. Shprits N. N. Vedenkin I. V. Yashin 《Cosmic Research》2013,51(6):427-433
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite. 相似文献
42.
A method is discussed for generating Weibull vectors with a desired correlation matrix and specified parameters. Such vectors may represent samples of a correlated clutter signal. The presented method makes use of a suitable nonlinear transformation of random Gaussian vectors with correlated components. Computational aspects of the method are also discussed. 相似文献
43.
The Electric Antennas for the STEREO/WAVES Experiment 总被引:1,自引:0,他引:1
S. D. Bale R. Ullrich K. Goetz N. Alster B. Cecconi M. Dekkali N. R. Lingner W. Macher R. E. Manning J. McCauley S. J. Monson T. H. Oswald M. Pulupa 《Space Science Reviews》2008,136(1-4):529-547
The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration. 相似文献
44.
S. W. Kahler 《Space Science Reviews》2007,129(4):359-390
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several
acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks
driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with
CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the
sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known
several decades ago, but recent observations have presented a more complex picture. We review early and recent observational
results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus
flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from
flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic
proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events;
electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks
are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares.
Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions
for future work are given. 相似文献
45.
46.
47.
Two attractive real-time implementation tests are presented that discriminate between correlated and uncorrelated clutter. A clutter model is assumed in which the envelope distribution within a cell is Rayleigh, but the mean clutter level fluctuates from cell to cell. Both the tests utilize observations made in pairs on two clutter envelopes corresponding to two consecutive azimuth sweeps. The results are applicable to real-time testing of the effectiveness of various decorrelation techniques employed by radar systems. 相似文献
48.
Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions 总被引:1,自引:0,他引:1
Fabien Darrouzet Dennis L. Gallagher Nicolas André Donald L. Carpenter Iannis Dandouras Pierrette M. E. Décréau Johan De Keyser Richard E. Denton John C. Foster Jerry Goldstein Mark B. Moldwin Bodo W. Reinisch Bill R. Sandel Jiannan Tu 《Space Science Reviews》2009,145(1-2):55-106
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions. 相似文献
49.
The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission 总被引:1,自引:0,他引:1
William M. Klipstein Bradford W. Arnold Daphna G. Enzer Alberto A. Ruiz Jeffrey Y. Tien Rabi T. Wang Charles E. Dunn 《Space Science Reviews》2013,178(1):57-76
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters. 相似文献
50.
E. E. Russell F. G. Brown R. A. Chandos W. C. Fincher L. F. Kubel A. A. Lacis L. D. Travis 《Space Science Reviews》1992,60(1-4):531-563
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures. 相似文献