首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
航空   13篇
航天技术   6篇
综合类   3篇
航天   4篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1975年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
21.
This paper presents a bio-inspired approach for the future design of strain sensors to be embedded in space structures. Campaniform sensilla are natural strain sensors and are used by insects for monitoring deformations of their body. The strategy used in nature is to locally amplify, through arrays of elliptical micro-holes, mechanical deformations. The authors focused their research on campaniform sensilla because of their simplicity and straightforward potential implementation in engineering systems. In this paper, the biological concept and structural analysis, performed to understand underlying principles, are presented and discussed.  相似文献   
22.
23.
Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon.  相似文献   
24.
25.
With the recent discoveries of planetary objects beyond Neptune and Pluto, the vast majority of all sizeable Solar System planetary objects lie now beyond Uranus, where insertion into orbit after a reasonably short travel is still not within the current capabilities of our spacecraft. Being able to go and stop at a transneptunian dwarf planet would represent a step stone for ambitious long-term goals. The pressure to send spacecraft to these bodies will grow, as, among the tens or hundreds of large objects, some will emerge as high priorities for science and exploration missions. It is subsequently necessary to prepare the technologies required for such spacecraft. In addition, being able to achieve a fast journey to a distant object will benefit also missions to closer targets.Thales Alenia Space has carried out a preliminary parameter exploration of such a mission with a challenging target: an orbiter in the Haumean system. The main parameters are the characteristics of the propulsion and power system, as well as the masses of the spacecraft. The exploration has inferred the technological improvement needed for reaching these objects within a reasonable time.  相似文献   
26.
基于虚拟现实的血管内介入手术三维导丝运动模拟   总被引:1,自引:0,他引:1  
导管和导丝在血管中的运动模拟在介入手术训练、计划及术中辅助治疗中具有重要意义。本文提出了一种快速有效的碰撞消除方法,开发了实时三维介入手术模拟系统,以模拟导管或导丝在实际血管中的运动行为。采用OpenGL图形库检测导管或导丝与血管壁之间的碰撞,通过几何分析和旋转角传播方法消除碰撞,最后对导管或导丝模型施加松弛过程,使其状态与实际状态更加吻合。实验结果表明,导管或导丝模型的运动状态与给定的材料参数密切相关,松弛过程使其状态更加自然,模拟可满足实时要求,方法可靠有效。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号