首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  国内免费   1篇
航空   26篇
航天技术   17篇
航天   16篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2008年   9篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   2篇
  1972年   1篇
  1968年   2篇
  1967年   2篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
31.
32.
Daily fluid and salt supplements (FSS) may be used to reduce plasma biochemical changes during bed rest (BR). The aim of this study was to evaluate the effect of a daily intake of FSS on plasma volume (PV) and biochemical changes during BR. Studies were done during a pre BR period of 15 days and during a BR period of 30 days. Thirty male athletes aged 22-26 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS were kept under a rigorous bed rest regime for 30 days. The SBRS took 26 ml water/kg body weight and 0.1 g sodium chloride/kg body weight daily. PV, protein, albumin, sodium (Na), Chloride (Cl), potassium (K), osmolality, creatinine, glucose, and whole blood haematocrit (Hct) and haemoglobin (Hb) concentrations were measured. PV increased significantly (P < or = 0.01) while plasma protein, albumin. Na, Cl, K, glucose, creatinine, osmolality, and whole blood Hb and Hct concentration decreased significantly (P < or = 0.01) in the SBRS group when compared with the UBRS group. By contrast, PV decreased significantly (P < or = 0.01), while plasma protein, albumin, Na, Cl, K, glucose, creatinine, osmolality and whole blood Hct and Hb concentration increased significantly (P < or = 0.01) in the UBRS group when compared with the SBRS and UACS groups. The measured parameters did not change significantly in the UACS group when compared with the baseline control values. It was concluded that a daily intake of FSS may be used to attenuate PV losses and biochemical changes in endurance trained athletes during bed rest.  相似文献   
33.
The THEMIS mission provides unprecedented multi-point observations of the magnetosphere in conjunction with an equally unprecedented dense network of ground measurements. However, coverage of the magnetosphere is still sparse. In order to tie together the THEMIS observations and to understand the data better, we will use the Open Geospace General Circulation Model (OpenGGCM), a global model of the magnetosphere-ionosphere system. OpenGGCM solves the magnetohydrodynamic (MHD) equations in the outer magnetosphere and couples via field aligned current (FAC), electric potential, and electron precipitation to a ionosphere potential solver and the Coupled Thermosphere Ionosphere Model (CTIM). The OpenGGCM thus provides a global comprehensive view of the magnetosphere-ionosphere system. An OpenGGCM simulation of one of the first substorms observed by THEMIS on 23 March 2007 shows that the OpenGGCM reproduces the observed substorm signatures very well, thus laying the groundwork for future use of the OpenGGCM to aid in understanding THEMIS data and ultimately contributing to a comprehensive model of the substorm process.  相似文献   
34.
Early observations by the THEMIS ESA plasma instrument have revealed new details of the dayside magnetosphere. As an introduction to THEMIS plasma data, this paper presents observations of plasmaspheric plumes, ionospheric ion outflows, field line resonances, structure at the low latitude boundary layer, flux transfer events at the magnetopause, and wave and particle interactions at the bow shock. These observations demonstrate the capabilities of the plasma sensors and the synergy of its measurements with the other THEMIS experiments. In addition, the paper includes discussions of various performance issues with the ESA instrument such as sources of sensor background, measurement limitations, and data formatting problems. These initial results demonstrate successful achievement of all measurement objectives for the plasma instrument.  相似文献   
35.
In-situ measurements of positive ion composition of the ionosphere of Venus are combined in an empirical model which is a key element for the Venus International Reference Atmosphere (VIRA) model. The ion data are obtained from the Pioneer Venus Orbiter Ion Mass Spectrometer (OIMS) which obtained daily measurements beginning in December 1978 and extending to July 1980 when the uncontrolled rise of satellite periapsis height precluded further measurements in the main body of the ionosphere. For this period, measurements of 12 ion species are sorted into altitude and local time bins with altitude extending from 150 to 1000 km. The model results exhibit the appreciable nightside ionosphere found at Venus, the dominance of atomic oxygen ions in the dayside upper ionosphere and the increase in prominence of atomic oxygen and deuterium ions on the nightside. Short term variations, such as the abrupt changes observed in the ionopause, cannot be represented in the model.  相似文献   
36.
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.  相似文献   
37.
This paper discusses some of the present developments in in situ electronics maintenance by the use of divers and by remote manipulators, and relates the effect of these developments to the operating cost of future sea-floor instrumentation systems.  相似文献   
38.
Automated learning methods can be used to design fault diagnosis procedures. When the characteristics of the measurements that distinguish the various faults are unknown, they can be ``learned' from example measurements on faulty systems. A learning algorithm is presented for determining which of several possible faults exists in a system. The procedure is demonstrated on a system where the test conditions preclude the use of traditional diagnosis procedures. When applied to actual hardware, the experimental results show good agreement with the theoretical limit of diagnosability. The resulting diagnosis is faster, simpler, and requires fewer measurements than other methods.  相似文献   
39.
40.
The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables, and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example, the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08, Flagstaff in 9/09, and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with non-US space agencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号