首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6694篇
  免费   22篇
  国内免费   12篇
航空   3011篇
航天技术   2273篇
综合类   29篇
航天   1415篇
  2021年   70篇
  2019年   39篇
  2018年   235篇
  2017年   163篇
  2016年   143篇
  2015年   62篇
  2014年   194篇
  2013年   225篇
  2012年   214篇
  2011年   304篇
  2010年   224篇
  2009年   347篇
  2008年   401篇
  2007年   217篇
  2006年   153篇
  2005年   199篇
  2004年   171篇
  2003年   219篇
  2002年   150篇
  2001年   231篇
  2000年   98篇
  1999年   132篇
  1998年   159篇
  1997年   115篇
  1996年   119篇
  1995年   177篇
  1994年   172篇
  1993年   96篇
  1992年   123篇
  1991年   59篇
  1990年   53篇
  1989年   114篇
  1988年   50篇
  1987年   58篇
  1986年   50篇
  1985年   147篇
  1984年   125篇
  1983年   113篇
  1982年   116篇
  1981年   174篇
  1980年   61篇
  1979年   49篇
  1978年   40篇
  1977年   36篇
  1976年   36篇
  1975年   34篇
  1974年   33篇
  1973年   29篇
  1972年   36篇
  1971年   32篇
排序方式: 共有6728条查询结果,搜索用时 15 毫秒
171.
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions.  相似文献   
172.
Crystalline in the Kumaon Himalaya, India near Askot area is a prominent site of the base metal mineralization and gossanised surface. This area is hosted by the sulphides and sulphates of Cu, Pb, Zn and Au and Ag mineralization with the altered rocks like sericite chlorite schist, gneiss etc. Due to the deep weathering this area is also a good illustration site of the gossanised outcrop.  相似文献   
173.
Surface chemistry of airless bodies in the solar system can be derived from remote X-ray spectral measurements from an orbiting spacecraft. X-rays from planetary surfaces are excited primarily by solar X-rays. Several experiments in the past have used this technique of X-ray fluorescence for deriving abundances of the major rock forming elements. The Chandrayaan-2 orbiter carries an X-ray fluorescence experiment named CLASS that is designed based on results from its predecessor C1XS flown on Chandrayaan-1. We discuss the new aspects of lunar science that can be potentially achieved with CLASS.  相似文献   
174.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   
175.
176.
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.  相似文献   
177.
Optical emission and linear laser absorption spectroscopy techniques were used in investigation of plasma with copper and silver admixture. The method of selection of spectral lines and spectroscopic data with the aim of diagnostics of multicomponent air plasma with two metal vapors admixture was developed. Energy level populations behavior on the Boltzmann plot were used for Cu I and Ag I spectroscopic data selection. In this way the selection of spectroscopic data for some of Cu I and Ag I lines was realized. Stark broadening parameters of Cu I and Ag I were examined. Experimentally obtained temperature and electron density radial distributions were used in the calculation of plasma composition in the assumption of local thermodynamic equilibrium. Linear laser absorption spectroscopy was used to examine the state of plasma.  相似文献   
178.
Plasma of the free burning electric arc between Ag–SnO2–ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.  相似文献   
179.
Changes of troposphere pressure associated with short-time variations of galactic cosmic rays (GCRs) taking place in the Northern hemisphere’s cold months (October–March) were analyzed for the period 1980–2006, NCEP/NCAR reanalysis data being used. Noticeable pressure variations during Forbush decreases of GCRs were revealed at extratropical latitudes of both hemispheres. The maxima of pressure increase were observed on the 3rd–4th days after the event onsets over Northern Europe and the European part of Russia in the Northern hemisphere, as well as on the 4th–5th days over the eastern part of the South Atlantic opposite Queen Maud Land and over the d’Urville Sea in the Southern Ocean. According to the weather chart analysis, the observed pressure growth, as a rule, results from the weakening of cyclones and intensification of anticyclone development in these areas. The presented results suggest that cosmic ray variations may influence the evolution of extratropical baric systems and play an important role in solar-terrestrial relationships.  相似文献   
180.
The Zakharov–Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew–Goldberger–Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号