全文获取类型
收费全文 | 8334篇 |
免费 | 18篇 |
国内免费 | 23篇 |
专业分类
航空 | 3718篇 |
航天技术 | 2852篇 |
综合类 | 31篇 |
航天 | 1774篇 |
出版年
2021年 | 89篇 |
2019年 | 50篇 |
2018年 | 252篇 |
2017年 | 165篇 |
2016年 | 150篇 |
2015年 | 62篇 |
2014年 | 218篇 |
2013年 | 273篇 |
2012年 | 255篇 |
2011年 | 384篇 |
2010年 | 279篇 |
2009年 | 409篇 |
2008年 | 433篇 |
2007年 | 276篇 |
2006年 | 188篇 |
2005年 | 233篇 |
2004年 | 219篇 |
2003年 | 258篇 |
2002年 | 184篇 |
2001年 | 272篇 |
2000年 | 142篇 |
1999年 | 181篇 |
1998年 | 220篇 |
1997年 | 136篇 |
1996年 | 188篇 |
1995年 | 243篇 |
1994年 | 222篇 |
1993年 | 129篇 |
1992年 | 170篇 |
1991年 | 54篇 |
1990年 | 61篇 |
1989年 | 159篇 |
1988年 | 65篇 |
1987年 | 66篇 |
1986年 | 75篇 |
1985年 | 221篇 |
1984年 | 177篇 |
1983年 | 135篇 |
1982年 | 141篇 |
1981年 | 247篇 |
1980年 | 65篇 |
1979年 | 55篇 |
1978年 | 58篇 |
1977年 | 51篇 |
1975年 | 58篇 |
1974年 | 46篇 |
1973年 | 37篇 |
1972年 | 46篇 |
1971年 | 44篇 |
1970年 | 42篇 |
排序方式: 共有8375条查询结果,搜索用时 11 毫秒
251.
S. V. Falaleev 《Russian Aeronautics (Iz VUZ)》2017,60(2):229-235
The paper studies different types of dampers for rotor supports of gas turbine engines (GTE). The advantages of hydrodynamic dampers are shown. Hydrodynamic dampers for GTE rotor supports are studied. A new design and technique of calculation are proposed for an adjustable hydrodynamic damper. 相似文献
252.
This paper proposes a novel landing gear for spacecraft that allows a weight reduction due to using deformable crash legs. Numerical simulation of the landing process was performed. 相似文献
253.
We determine the behavior of onboard gas-generator flowrate for generating the cavitation flow around a hybrid aerial underwater vehicle by using an annular wing on the underwater trajectory section. 相似文献
254.
K. Dolag S. Borgani S. Schindler A. Diaferio A. M. Bykov 《Space Science Reviews》2008,134(1-4):229-268
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure
hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model,
requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques
of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct
N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle
methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of
Lagrangian smoothed particle hydrodynamics (SPH) methods. 相似文献
255.
V. M. Gureev E. B. Matz Yu. F. Gortyshov R. R. Gel’manov 《Russian Aeronautics (Iz VUZ)》2008,51(4):447-451
A method for representing thermodynamic and thermophysical functions is presented; the functions make it possible to simulate thermal and gasodynamic processes in powerplants that use different individual substances or their mixtures as a working fluid. The method also involves consideration of real gas properties. 相似文献
256.
Mende S.B. Heetderks H. Frey H.U. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Tremsin A.S. Spann J. Dougani H. Fuselier S.A. Magoncelli A.L. Bumala M.B. Murphree S. Trondsen T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response. 相似文献
257.
Cosmic radiation has been measured by a variety of techniques since 1933. This paper presents the evolution of data acquisition, processing, and availability of cosmic radiation data from the early years to the present time. Information on the worldwide network of neutron monitor stations and the availability of these cosmic radiation records is included. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
258.
Green J.L. Benson R.F. Fung S.F. Taylor W.W.L. Boardsen S.A. Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N
e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R
E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N
e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible. 相似文献
259.
A Twin-CME Scenario for Ground Level Enhancement Events 总被引:2,自引:0,他引:2
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed. 相似文献
260.
E. P. Kontar J. C. Brown A. G. Emslie W. Hajdas G. D. Holman G. J. Hurford J. Ka?parov�� P. C. V. Mallik A. M. Massone M. L. McConnell M. Piana M. Prato E. J. Schmahl E. Suarez-Garcia 《Space Science Reviews》2011,159(1-4):301-355
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future. 相似文献