首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4518篇
  免费   12篇
  国内免费   14篇
航空   1768篇
航天技术   1503篇
综合类   26篇
航天   1247篇
  2022年   18篇
  2021年   52篇
  2019年   23篇
  2018年   164篇
  2017年   126篇
  2016年   132篇
  2015年   50篇
  2014年   147篇
  2013年   175篇
  2012年   152篇
  2011年   224篇
  2010年   180篇
  2009年   271篇
  2008年   279篇
  2007年   175篇
  2006年   101篇
  2005年   135篇
  2004年   136篇
  2003年   148篇
  2002年   109篇
  2001年   165篇
  2000年   62篇
  1999年   80篇
  1998年   86篇
  1997年   66篇
  1996年   77篇
  1995年   105篇
  1994年   87篇
  1993年   49篇
  1992年   68篇
  1991年   19篇
  1990年   34篇
  1989年   66篇
  1988年   21篇
  1987年   31篇
  1986年   32篇
  1985年   118篇
  1984年   79篇
  1983年   66篇
  1982年   64篇
  1981年   119篇
  1980年   33篇
  1979年   21篇
  1978年   19篇
  1977年   25篇
  1976年   20篇
  1975年   24篇
  1974年   23篇
  1972年   15篇
  1971年   14篇
排序方式: 共有4544条查询结果,搜索用时 578 毫秒
101.
With the beginning of space era, a new branch of medicine has arisen and has been developing along with human exploration of outer space. And even though space medicine mainly faces the same problems as traditional medicine--cosmonauts health care and their high efficiency--this branch, has its own features, associated with the unusual factors of space flight, of which weightlessness is the major one. During the development of manned cosmonautics (duration of a human stay in space has reached already 438 days), methods of cosmonauts medical support and monitoring of their condition have been developed, knowledge of human possibilities and methods of process of organism adaptation to various and frequently severe conditions of external environment have increased. All this led to the fact that nowadays space medicine can become useful for improvement of human health care not only in space but also on the Earth. Moreover, the problem of implementation of cosmonautics achievements, and in particular of space medicine, in practice of public health care presents one of the most important issues concerning human health care. It is also connected with public opinion which is more and more concerned about the efficiency of significant expenses on space activities, especially lately. People often are set by the questions: what has space given, what fruits has space research provided to mankind, which results of this research can be used on the Earth already today for improvement of their life, for discussion of many difficult earthly problems? In terms of using cosmonautics possibilities, its achievements for health care and treatment, it is possible to define a few branches, in which purposeful studies are carried out.  相似文献   
102.
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.

In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity.  相似文献   

103.
The article presents data concerning the osmolality and concentration of electrolytes and hormones regulating their balance for blood serum of 223 cosmonauts and astronauts. The obtained results allow us to judge the constancy of physicochemical parameters for the blood serum of healthy individuals and how they react to extreme conditions of space flight. The parameters used for evaluation included not just absolute values for the examined indices, but also how they responded to space flight, the dependence on baseline values and the interrelationship between ions. These data are important to predict the effect of exposure to extreme conditions and point to what extent the effect depends on the characteristics of the individual.  相似文献   
104.
A physical and a mathematical model of a working process in the pulsejet engine based on the analysis of the thermodynamic cycle are proposed. The process of self-sustained periodic combustion is connected with special features of elementary processes comprising the cycle, influencing the engine operation and depending on its design parameters. The calculation method is based on the use of fundamental laws of conservation and basic equations of gas dynamics  相似文献   
105.
This paper presents a review of theoretical and experimental results on stability and other unsteady properties of aircraft wakes. The basic mechanisms responsible for the propagation and the amplification of perturbation along vortices, namely the Kelvin waves and the cooperative instabilities, are first detailed. These two generic unsteady mechanisms are described by considering asymptotic linear stability analysis of model flows such as vortex filaments or Lamb–Oseen vortices. Extension of the linear analysis to more representative flows, using a biglobal stability approach, is also described. Experimental results obtained using LDV, hot wire and PIV in wind tunnels are presented and they are commented upon the light of theory.  相似文献   
106.
A constant false alarm rate (CFAR) detection method which is based on a combination of median and morphological filters (MEMO) is proposed. The MEMO algorithm has robust performance with small CFAR loss, very good behavior at clutter edges and high detection performance in the case of closely spaced narrowband signals (targets). The proposed MEMO method is favourably compared with cell averaging (CA) and ordered statistics (OS) CFAR detectors. The Monte Carlo method is employed to analyze the MEMO-CFAR detector  相似文献   
107.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
108.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
109.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
110.
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological issues of cometary nuclei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号