首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6245篇
  免费   15篇
  国内免费   9篇
航空   2701篇
航天技术   2133篇
综合类   26篇
航天   1409篇
  2021年   55篇
  2019年   32篇
  2018年   200篇
  2017年   150篇
  2016年   131篇
  2015年   58篇
  2014年   153篇
  2013年   206篇
  2012年   184篇
  2011年   264篇
  2010年   208篇
  2009年   297篇
  2008年   326篇
  2007年   205篇
  2006年   134篇
  2005年   179篇
  2004年   186篇
  2003年   199篇
  2002年   145篇
  2001年   208篇
  2000年   86篇
  1999年   126篇
  1998年   151篇
  1997年   104篇
  1996年   102篇
  1995年   178篇
  1994年   169篇
  1993年   89篇
  1992年   106篇
  1991年   40篇
  1990年   58篇
  1989年   100篇
  1988年   40篇
  1987年   40篇
  1986年   51篇
  1985年   177篇
  1984年   150篇
  1983年   125篇
  1982年   108篇
  1981年   208篇
  1980年   49篇
  1979年   45篇
  1978年   45篇
  1977年   41篇
  1976年   40篇
  1975年   44篇
  1974年   36篇
  1973年   34篇
  1972年   50篇
  1971年   27篇
排序方式: 共有6269条查询结果,搜索用时 15 毫秒
161.
    
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
162.
    
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
163.
  总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
164.
    
Several design and testing aspects of the TRIO smart sensor data acquisition chip, developed by JHU/APL for NASA spacecraft applications are presented. TRIO includes a 10 bit self-corrected analog-to-digital converter (ADC), 16/32 analog inputs, a front end multiplexer with selectable aquisition time, a current source, memory, serial and parallel bus, and control logic. So far TRIO is used in many missions including Contour, Messenger, Stereo, Pluto, and the generic JPL X2000 spacecraft bus.  相似文献   
165.
    
Recursive analytical expressions for speedup and solution time for a multilevel tree sequentially processing a divisible load under cut through switching are developed. Such cut through switching is shown to be more efficient than store and forward switching. Aerospace applications include sensor networks, radar, and satellite imagery processing.  相似文献   
166.
    
A command and control (C/sup 2/) problem for military air operations is addressed. Specifically, we consider C/sup 2/ problems for air vehicles against ground-based targets and defensive systems. The problem is viewed as a stochastic game. We restrict our attention to the C/sup 2/ level where the problem may consist of a few unmanned combat air vehicles (UCAVs) or aircraft (or possibly teams of vehicles), less than say, a half-dozen enemy surface-to-air missile air defense units (SAMs), a few enemy assets (viewed as targets from our standpoint), and some enemy decoys (assumed to mimic SAM radar signatures). At this low level, some targets are mapped out and possible SAM sites that are unavoidably part of the situation are known. One may then employ a discrete stochastic game problem formulation to determine which of these SAMs should optimally be engaged (if any), and by what series of air vehicle operations. We provide analysis, numerical implementation, and simulation for full state-feedback and measurement feedback control within this C/sup 2/ context. Sensitivity to parameter uncertainty is discussed. Some insight into the structure of optimal and near-optimal strategies for C/sup 2/ is obtained. The analysis is extended to the case of observations which may be affected by adversarial inputs. A heuristic based on risk-sensitive control is applied, and it is found that this produces improved results over more standard approaches.  相似文献   
167.
    
Adaptive beamforming is used to enhance the detection of target echoes received by high frequency (HF) surface wave (HFSW) over-the-horizon (OTH) radars in the presence of spatially structured interference. External interference from natural and man-made sources typically masks the entire range-Doppler search space and is characterized by a spatial covariance matrix that is time-varying or nonstationary over the coherent processing interval (CPI). Adaptive beamformers that update the spatial filtering weight vector within the CPI are likely to suppress such interference most effectively, but the intra-CPI antenna pattern fluctuations result in temporal decorrelation of the clutter which severely degrades subclutter visibility after Doppler processing. A robust adaptive beamformer that effectively suppresses spatially nonstationary interference without degrading subclutter visibility is proposed here. The proposed algorithm is computationally efficient and suitable for practical implementation. Its operational performance is evaluated using experimental data recorded by the Iluka HFSW OTH radar, located near Darwin in far north Australia.  相似文献   
168.
基于自联想网络的发动机传感器解析余度技术   总被引:9,自引:2,他引:7  
本文提出了一种基于自联想神经网络的传感器解析余度技术。在这种网络中,冗余传感器的信息被压缩、重组进入网络的第一部分,网络的第二部分将压缩信息恢复出来。基于数据融合原理,若一个传感器发生故障,其它传感器仍可提供足够的信息代替发生故障的传感器。理论分析和用于涡轴发动机的仿真结果表明,这种特殊结构的自联想网络具有良好的过滤噪声和故障信号的作用,特别适合于用作不易建模的复杂对象的传感器信号重构  相似文献   
169.
  总被引:2,自引:0,他引:2  
A parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations of ideal magnetohydrodynamics (MHD) in three space dimensions. This solution algorithm makes use of modern finite-volume numerical methodology to provide a combination of high solution accuracy and computational robustness. Efficient and scalable implementations of the method have been developed for massively parallel computer architectures and high performance achieved. Numerical results are discussed for a simplified model of the initiation and evolution of coronal mass ejections (CMEs) in the inner heliosphere. The results demonstrate the potential of this numerical tool for enhancing our understanding of coronal and solar wind plasma processes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
170.
    
By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the large-scale quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号