全文获取类型
收费全文 | 241篇 |
免费 | 0篇 |
国内免费 | 3篇 |
专业分类
航空 | 148篇 |
航天技术 | 47篇 |
综合类 | 2篇 |
航天 | 47篇 |
出版年
2022年 | 1篇 |
2021年 | 6篇 |
2019年 | 3篇 |
2018年 | 33篇 |
2017年 | 18篇 |
2016年 | 1篇 |
2015年 | 7篇 |
2014年 | 3篇 |
2013年 | 11篇 |
2012年 | 7篇 |
2011年 | 10篇 |
2010年 | 10篇 |
2009年 | 12篇 |
2008年 | 7篇 |
2007年 | 14篇 |
2006年 | 4篇 |
2005年 | 11篇 |
2004年 | 7篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1986年 | 2篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 9篇 |
1978年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有244条查询结果,搜索用时 15 毫秒
71.
Theories and Observations of Ion Energization and Outflow in the High Latitude Magnetosphere 总被引:4,自引:0,他引:4
A review is given of several mechanisms causing outflow at high latitudes of ionospheric ions to the terrestrial magnetosphere. The upward ion motion along the geomaagnetic field can be divided into several categories, including polar wind, bulk ion outflow in the auroral region, upwelling ions and ion conics and beams. More than one ion energization mechanism can be operating within each category, and a combination of categories is important for the total ion outflow. 相似文献
72.
73.
74.
T.S. Kiss N. Gyenge R. Erdélyi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):611-616
Jets, whatever small (e.g. spicules) or large (e.g. macrospicules) their size, may play a key role in momentum and energy transport from photosphere to chromosphere and at least to the low corona. Here, we investigate the properties of abundant, large-scale dynamic jets observable in the solar atmosphere: the macrospicules (MS). These jets are observationally more distinct phenomena than their little, and perhaps more ubiquitous, cousins, the spicules. Investigation of long-term variation of the properties of macrospicules may help to a better understanding of their underlying physics of generation and role in coronal heating. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory, a new dataset, with several hundreds of macrospicules, was constructed encompassing a period of observations over six years. Here, we analyse the measured properties and relations between these properties of macrospicules as function of time during the observed time interval. We found that cross-correlations of several of these macrospicule properties display a strong oscillatory pattern. Next, wavelet analysis is used to provide more detailed information about the temporal behaviour of the various properties of MS. For coronal hole macrospicules, a significant peak is found at around 2-year period. This peak also exists partially or is shifted to longer period, in the case of quiet Sun macrospicules. These observed findings may be rooted in the underlying mechanism generating the solar magnetic field, i.e. the global solar dynamo. 相似文献
75.
Mars is unique to have undergone all planetary evolutionary steps, without global resets, till its geological death: this is reflected in the variety of its surface features. The determination of Mars surface composition has thus the potential to identify the processes responsible for the entire Mars evolution, from geological timescales to seasonal variations. Due to technical challenges, only few investigations have been performed so far. They are summarized in this paper, and their interpretation is discussed in terms of surface materials (minerals, ices and frosts). 相似文献
76.
D. Le Quéau R. Pellat A. Roux 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(3):25-29
In this short review, we limit our comments to the different theories which have been proposed to explain the observed features of the terrestrial, Jovian and Saturnian radio-emissions, and mainly to the high frequency portion of the spectra. 相似文献
77.
78.
John L. Campbell Glynis M. Perrett Ralf Gellert Stefan M. Andrushenko Nicholas I. Boyd John A. Maxwell Penelope L. King Céleste D. M. Schofield 《Space Science Reviews》2012,170(1-4):319-340
The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s–100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process. 相似文献
79.
Schulze-Makuch D Méndez A Fairén AG von Paris P Turse C Boyer G Davila AF António MR Catling D Irwin LN 《Astrobiology》2011,11(10):1041-1052
In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus. 相似文献
80.
P. M. E. Décréau P. Fergeau V. Krannosels'kikh M. Lévêque Ph. Martin O. Randriamboarison F. X. Sené J. G. Trotignon P. Canu P. B. Mögensen 《Space Science Reviews》1997,79(1-2):157-193
The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2–80 cm-3. This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wave analysis function of the instrument is provided by FFT calculation. Compared with the swept frequency wave analysis of previous sounders, this technique has several new capabilities. In particular, when used for natural wave measurements (which cover here the 2–80 kHz range), it offers a flexible trade-off between time and frequency resolutions. In the basic nominal operational mode, the density is measured every 28 s, the frequency and time resolution for the wave measurements are about 600 Hz and 2.2 s, respectively. Better resolutions can be obtained, especially when the spacecraft telemetry is in burst mode. Special attention has been paid to the coordination of WHISPER operations with the wave instruments, as well as with the low-energy particle counters. When operated from the multi-spacecraft Cluster, the WHISPER instrument is expected to contribute in particular to the study of plasma waves in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere. 相似文献