全文获取类型
收费全文 | 3275篇 |
免费 | 26篇 |
国内免费 | 13篇 |
专业分类
航空 | 1587篇 |
航天技术 | 1154篇 |
综合类 | 4篇 |
航天 | 569篇 |
出版年
2021年 | 26篇 |
2019年 | 23篇 |
2018年 | 55篇 |
2017年 | 51篇 |
2016年 | 45篇 |
2015年 | 26篇 |
2014年 | 71篇 |
2013年 | 92篇 |
2012年 | 83篇 |
2011年 | 120篇 |
2010年 | 79篇 |
2009年 | 137篇 |
2008年 | 153篇 |
2007年 | 100篇 |
2006年 | 71篇 |
2005年 | 93篇 |
2004年 | 90篇 |
2003年 | 99篇 |
2002年 | 72篇 |
2001年 | 117篇 |
2000年 | 65篇 |
1999年 | 69篇 |
1998年 | 87篇 |
1997年 | 59篇 |
1996年 | 95篇 |
1995年 | 112篇 |
1994年 | 111篇 |
1993年 | 50篇 |
1992年 | 72篇 |
1991年 | 34篇 |
1990年 | 32篇 |
1989年 | 76篇 |
1988年 | 28篇 |
1987年 | 24篇 |
1986年 | 35篇 |
1985年 | 90篇 |
1984年 | 91篇 |
1983年 | 65篇 |
1982年 | 66篇 |
1981年 | 103篇 |
1980年 | 20篇 |
1979年 | 25篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1975年 | 29篇 |
1974年 | 23篇 |
1973年 | 22篇 |
1972年 | 21篇 |
1971年 | 19篇 |
1969年 | 20篇 |
排序方式: 共有3314条查询结果,搜索用时 15 毫秒
211.
Ground penetrating radar VIY-2 总被引:2,自引:0,他引:2
Prokhorenko V.P. Ivashchuk V.E. Korsun S.V. 《Aerospace and Electronic Systems Magazine, IEEE》2005,20(7):16-18
VIY-2 ground penetrating radar (GPR) with unique sounding possibilities and use simplicity is presented at this paper. VIY-2 GPR combines all units (synchronizer, transmitting and receiving modules, powering, and antenna system) into single case. The VIY-2 GPR communicates with computer via standard interface RS232 or USB1.0. Technical solutions utilized by the VIY-2 GPR reduce deployment time and simplify surveying process. The VIY-2 GPR design features and its components interaction are considered at this paper. Some field results are also presented here. The VIY-2 GPR design concept allows reducing the data acquisition time,, optimizing the time-varying gain control function, applying depth-stacking dependence, controlling the surveying window position and interference reducing by pulse repetition frequency randomizing. 相似文献
212.
David G. Sibeck R. Allen H. Aryan D. Bodewits P. Brandt G. Branduardi-Raymont G. Brown J. A. Carter Y. M. Collado-Vega M. R. Collier H. K. Connor T. E. Cravens Y. Ezoe M.-C. Fok M. Galeazzi O. Gutynska M. Holmström S.-Y. Hsieh K. Ishikawa D. Koutroumpa K. D. Kuntz M. Leutenegger Y. Miyoshi F. S. Porter M. E. Purucker A. M. Read J. Raeder I. P. Robertson A. A. Samsonov S. Sembay S. L. Snowden N. E. Thomas R. von Steiger B. M. Walsh S. Wing 《Space Science Reviews》2018,214(4):79
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers. 相似文献
213.
L. Metcalfe M. Aberasturi E. Alonso R. Álvarez M. Ashman I. Barbarisi J. Brumfitt A. Cardesín D. Coia M. Costa R. Fernández D. Frew J. Gallegos J. J. García Beteta B. Geiger D. Heather T. Lim P. Martin C. Muñoz Crego M. Muñoz Fernandez A. Villacorta H. Svedhem 《Space Science Reviews》2018,214(4):78
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes. 相似文献
214.
A. V. Streltsov J.-J. Berthelier A. A. Chernyshov V. L. Frolov F. Honary M. J. Kosch R. P. McCoy E. V. Mishin M. T. Rietveld 《Space Science Reviews》2018,214(8):118
Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field. 相似文献
215.
K. S. Kuz’mina I. K. Marchevskii V. S. Moreva E. P. Ryatina 《Russian Aeronautics (Iz VUZ)》2017,60(3):398-405
A high-accuracy numerical scheme is proposed for vortex methods of flow simulation around airfoils of arbitrary shape including airfoils with sharp edges, because it does not require the solution continuity on the airfoil. 相似文献
216.
The paper highlights significance of the interturbine transition duct as part of the high pressure and low pressure turbine spool. The correlations have been suggested allowing us to estimate variation of the average cross section flow swirl while its passing the interturbine transition duct. 相似文献
217.
S. B. Mende H. U. Frey K. Rider C. Chou S. E. Harris O. H. W. Siegmund S. L. England C. Wilkins W. Craig T. J. Immel P. Turin N. Darling J. Loicq P. Blain E. Syrstad B. Thompson R. Burt J. Champagne P. Sevilla S. Ellis 《Space Science Reviews》2017,212(1-2):655-696
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft. 相似文献
218.
V. V. Semenov I. E. Ivanov I. A. Kryukov P. G. Ivanov 《Russian Aeronautics (Iz VUZ)》2008,51(3):278-284
The numerical calculations of flows in conical and contoured nozzles with slots in the supersonic part that operate under overexpansion conditions are presented. The calculations were made with the aid of the authors’ algorithm and program of simulating turbulent two-dimensional (axisymmetric) flows of a viscous heat-conducting gas. The results of computational investigations of tractive slot nozzle characteristics and the amount of combustion product leakage from an annular slot depending on the flight altitude are given. It is shown that the flight altitude at which the gas flow through the annular slot is “chocked” depends on its size and location in the supersonic nozzle part. 相似文献
219.
S. B. Mende S. E. Harris H. U. Frey V. Angelopoulos C. T. Russell E. Donovan B. Jackel M. Greffen L. M. Peticolas 《Space Science Reviews》2008,141(1-4):357-387
The NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) project is intended to investigate magnetospheric substorm phenomena, which are the manifestations of a basic instability of the magnetosphere and a dominant mechanism of plasma transport and explosive energy release. The major controversy in substorm science is the uncertainty as to whether the instability is initiated near the Earth, or in the more distant >20 Re magnetic tail. THEMIS will discriminate between the two possibilities by using five in-situ satellites and ground-based all-sky imagers and magnetometers, and inferring the propagation direction by timing the observation of the substorm initiation at multiple locations in the magnetosphere. An array of stations, consisting of 20 all-sky imagers (ASIs) and 30-plus magnetometers, has been developed and deployed in the North American continent, from Alaska to Labrador, for the broad coverage of the nightside magnetosphere. Each ground-based observatory (GBO) contains a white light imager that takes auroral images at a 3-second repetition rate (“cadence”) and a magnetometer that records the 3 axis variation of the magnetic field at 2 Hz frequency. The stations return compressed images, “thumbnails,” to two central databases: one located at UC Berkeley and the other at the University of Calgary, Canada. The full images are recorded at each station on hard drives, and these devices are physically returned to the two data centers for data copying. All data are made available for public use by scientists in “browse products,” accessible by using internet browsers or in the form of downloadable CDF data files (the “browse products” are described in detail in a later section). Twenty all-sky imager stations are installed and running at the time of this publication. An example of a substorm was observed on the 23rd of December 2006, and from the THEMIS GBO data, we found that the substorm onset brightening of the equatorward arc was a gradual process (>27 seconds), with minimal morphology changes until the arc breaks up. The breakup was timed to the nearest frame (<3 s) and located to the nearest latitude degree at about ±3oE in longitude. The data also showed that a similar breakup occurred in Alaska ~10 minutes later, highlighting the need for an array to distinguish prime onset. 相似文献
220.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献