全文获取类型
收费全文 | 64篇 |
免费 | 0篇 |
专业分类
航空 | 35篇 |
航天技术 | 23篇 |
航天 | 6篇 |
出版年
2017年 | 1篇 |
2015年 | 1篇 |
2013年 | 1篇 |
2011年 | 1篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 8篇 |
2007年 | 3篇 |
2004年 | 1篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有64条查询结果,搜索用时 15 毫秒
61.
J.P. McGuirk L.L. Anderson A.H. Thompson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):45-48
Synoptic-scale “moisture bursts” are defined, based on infrared GOES imagery, and their synoptic climatology is developed. Quantitative analysis of satellite-derived individual channel radiance data and vertical eigenfunctions of complete channel data yield rich structural detail; these details do not appear in FGGE analyses in regions void of conventional meteorological data. 相似文献
62.
Rodger I. Thompson Jill Bechtold Daniel Eisenstein Xiaohui Fan David Arnett Carlos Martins Robert Kennicutt John Black 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Many theoretical models of dark energy invoke rolling scaler fields which in turn predict time varying values of the fundamental constants. Establishing the value of the fundamental constants at various times in the universe can probe and test the various dark energy theories. One of the constants that is predicted to vary is the ratio of the electron to proton mass μ. It was established early on that molecular spectra are sensitive to the value of μ and can be used as probes of that value. This article describes the use of the spectrum of molecular hydrogen in high redshift Damped Lyman Alpha systems (DLAs) as a sensitive probe of the time evolution of μ. 相似文献
63.
Charles E. Schlemm II Richard D. Starr George C. Ho Kathryn E. Bechtold Sarah A. Hamilton John D. Boldt William V. Boynton Walter Bradley Martin E. Fraeman Robert E. Gold John O. Goldsten John R. Hayes Stephen E. Jaskulek Egidio Rossano Robert A. Rumpf Edward D. Schaefer Kim Strohbehn Richard G. Shelton Raymond E. Thompson Jacob I. Trombka Bruce D. Williams 《Space Science Reviews》2007,131(1-4):393-415
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of
the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital
phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft
will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface
of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12°
field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis
due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority
of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes
XRS’s science objectives, technical design, calibration, and mission observation strategy. 相似文献
64.
A. Pedersen N. Cornilleau-Wehrlin B. De la Porte A. Roux A. Bouabdellah P. M. E. Décréau F. Lefeuvre F. X. Sène D. Gurnett R. Huff G. Gustafsson G. Holmgren L. Woolliscroft H. ST. C. Alleyne J. A. Thompson P. H. N. Davies 《Space Science Reviews》1997,79(1-2):93-106
In order to get the maximum scientific return from available resources, the wave experimenters on Cluster established the Wave Experiment Consortium (WEC). The WEC's scientific objectives are described, together with its capability to achieve them in the course of the mission. The five experiments and the interfaces between them are shown in a general block diagram (Figure 1). WEC has organised technical coordination for experiment pre-delivery tests and spacecraft integration, and has also established associated working groups for data analysis and operations in orbit. All science operations aspects of WEC have been worked out in meetings with wide participation of investigators from the five WEC teams. 相似文献