首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   0篇
  国内免费   3篇
航空   113篇
航天技术   59篇
航天   57篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   13篇
  2017年   7篇
  2016年   1篇
  2015年   4篇
  2014年   10篇
  2013年   19篇
  2012年   10篇
  2011年   21篇
  2010年   10篇
  2009年   9篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   2篇
  1967年   3篇
  1966年   1篇
排序方式: 共有229条查询结果,搜索用时 156 毫秒
41.
The importance of high resolution meteorological analysis of the atmosphere increased over the past years. A detailed analysis of the humidity field is an important precondition for a better monitoring of local and regional extreme precipitation events and for forecasts with improved spatial resolution. For this reason, the Austrian Meteorological Agency (ZAMG) is operating the spatial and temporal high resolution INCA system (Integrated Now-casting through Comprehensive Analysis) since begin of 2005. Errors in this analysis occur mainly in the areas of rapidly changing and hard to predict weather conditions or rugged topography with extreme differences in height such as the alpine area of Austria. The aim of this work is to provide GNSS based measurements of the tropospheric water vapour content with a temporal resolution of 1 h and a temporal delay of less than 1 h to assimilate these estimates into the INCA system. Additional requirement is an accuracy of better than 1 mm of the precipitable water (PW) estimates.  相似文献   
42.
随着复合材料构件被广泛地应用于航空、航天和船舶等各个领域,这些复合材料构件的安全对产品质量起到关键的作用,具有重要的经济价值。无论是制造过程还是维修过程,都需要对复合材料构件进行快速的缺陷检测。剪切成像技术是一种高效的、全方位缺陷检测技术,并被广泛地认为是针对现代复合材料构件的可靠的检测技术。本文将介绍剪切成像技术最新的发展动态和软件技术,并概述其应用潜力。  相似文献   
43.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
44.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
45.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   
46.
MESSENGER: Exploring Mercury’s Magnetosphere   总被引:1,自引:0,他引:1  
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field. MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.  相似文献   
47.
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.  相似文献   
48.
描述并确定具有明显纹理粗糙表面均方根斜率的光散射技术(均方根斜率是联合表面轮廓高度和波长特性的混合参数)。称为散射光锥法(The scattered light-conemethod)的该技术是基于激光角散射检测阵列(DALLAS——Defector Array for Laser LishtAngular Scattering),它用于测量粗糙表面散射光角分布的仪器。均方根斜率是从DALLAS光散射图象的角宽得到的。一般可以发现角宽(即估计的均方根斜率)对光的入射角和散射角变化相当大时是不敏感的。这些结果与表面材料无关,并且对正弦和随机粗糙表面都是有效的。介绍了散射光锥法的测量原理、实验、数据分析和几点结论。  相似文献   
49.
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites.  相似文献   
50.
Various plants have the ability to follow the sun with their flowers or leaves during the course of a day via a mechanism known as heliotropism. This mechanism is characterised by the introduction of pressure gradients between neighbouring motor cells in the plant?s stem, enabling the stem to bend. By adapting this bio-inspired mechanism to mechanical systems, a new class of smart structures can be created. The developed overall structure is made up of a number of cellular colonies, each consisting of a central pressure source surrounded by multiple cells. After launch, the cellular arrays are deployed in space and are either preassembled or alternatively are attached together during their release or afterwards. A central pressure source is provided by a high-pressure storage unit with an integrated valve, which provides ingress gas flow to the system; the gas is then routed through the system via a sequence of valve operations and cellular actuations, allowing for any desired shape to be achieved within the constraints of the deployed array geometry. This smart structure consists of a three dimensional adaptable cellular array with fluid controlling Micro Electromechanical Systems (MEMS) components enabling the structure to change its global shape. The proposed MEMS components include microvalves, pressure sensors, mechanical interconnect structures, and electrical routing. This paper will also give an overview of the system architecture and shows the feasibility and shape changing capabilities of the proposed design with multibody dynamic simulations. Example applications of this lightweight shape changing structure include concentrators, mirrors, and communications antennas that are able to dynamically change their focal point, as well as substructures for solar sails that are capable of steering through solar winds by altering the sails? subjected area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号