首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4362篇
  免费   6篇
  国内免费   12篇
航空   1873篇
航天技术   1594篇
综合类   13篇
航天   900篇
  2021年   32篇
  2019年   20篇
  2018年   118篇
  2017年   98篇
  2016年   76篇
  2015年   32篇
  2014年   109篇
  2013年   119篇
  2012年   112篇
  2011年   179篇
  2010年   133篇
  2009年   212篇
  2008年   265篇
  2007年   133篇
  2006年   92篇
  2005年   114篇
  2004年   130篇
  2003年   160篇
  2002年   89篇
  2001年   173篇
  2000年   74篇
  1999年   115篇
  1998年   121篇
  1997年   89篇
  1996年   103篇
  1995年   126篇
  1994年   124篇
  1993年   54篇
  1992年   89篇
  1991年   29篇
  1990年   39篇
  1989年   87篇
  1988年   33篇
  1987年   51篇
  1986年   36篇
  1985年   129篇
  1984年   74篇
  1983年   69篇
  1982年   87篇
  1981年   128篇
  1980年   40篇
  1979年   30篇
  1978年   29篇
  1977年   30篇
  1976年   24篇
  1975年   32篇
  1974年   26篇
  1973年   16篇
  1972年   19篇
  1969年   15篇
排序方式: 共有4380条查询结果,搜索用时 15 毫秒
121.
In this article we address several criticisms of Petschek-type reconnection models which have recently been raised by Heikkila. We discuss features of the time-dependent Petschek-type models in the context of the solar wind-magnetosphere interaction, and point out that such models can incorporate and reproduce observed features at the magnetopause, such as plasma jets and erosion of the current sheet. We argue that some of Heikkila's criticisms can be attributed to weaknesses in the analysis due to incomplete experimental information, rather than to flaws in the concept of reconnection per se; in this category we include the question of which instability leads to the localised breakup of the magnetopause current sheet. Other criticisms are based on an adherence to steady-state models, and cannot be sustained within the extended time-dependent theory. We discuss, for example, how the time-dependent model can provide a consistent picture of how energy from the incoming solar wind is transferred and converted as it enters the magnetosphere.  相似文献   
122.
HYDRA is an experimental hot plasma investigation for the POLAR spacecraft of the GGS program. A consortium of institutions has designed a suite of particle analyzers that sample the velocity space of electron and ions between 2 keV/q – 35 keV/q in three dimensions, with a routine time resolution of 0.5 s. Routine coverage of velocity space will be accomplished with an angular homogeneity assumption of 16°, appropriate for subsonic plasmas, but with special 1.5° resolution for electrons with energies between 100 eV and 10 keV along and opposed to the local magnetic field. This instrument produces 4.9 kilobits s–1 to the telemetry, consumes on average 14 W and requires 18.7 kg for deployment including its internal shielding. The scientific objectives for the polar magnetosphere fall into four broad categories: (1) those to define the ambient kinetic regimes of ions and electrons; (2) those to elucidate the magnetohydrodynamic responses in these regimes; (3) those to assess the particle populations with high time resolution; and (4) those to determine the global topology of the magnetic field. In thefirst group are issues of identifying the origins of particles at high magnetic latitudes, their energization, the altitude dependence of the forces, including parallel electric fields they have traversed. In thesecond group are the physics of the fluid flows, regimes of current, and plasma depletion zones during quiescent and disturbed magnetic conditions. In thethird group is the exploration of the processes that accompany the rapid time variations known to occur in the auroral zone, cusp and entry layers as they affect the flow of mass, momentum and energy in the auroral region. In thefourth class of objectives are studies in conjunction with the SWE measurements of the Strahl in the solar wind that exploit the small gyroradius of thermal electrons to detect those magnetic field lines that penetrate the auroral region that are directly open to interplanetary space where, for example, the Polar Rain is observed.  相似文献   
123.
Parameters of expanding magnetic loops and arches and of mass flows generated by them in the corona have been computed in a 1D two-fluid approximation. Two possible trigger mechanisms of the coronal transients have been considered: (i) sudden increase of the background magnetic field strength, and (ii) heating and compression plasma inside these magnetic structures. We discuss the formation of shock waves and their dependence on dynamics and geometry of the magnetic structures.  相似文献   
124.
Magnetic Position and Orientation Tracking System   总被引:3,自引:0,他引:3  
Three-axis generation and sensing of quasi-static magneticdipole fields provide information sufficient to determine both the position and orientation of the sensor relative to the source. Linear rotation transformations based upon the previous measurements are applied to both the source excitation and sensor output vectors, yielding quantities that are linearly propotional to small changes in the position and orientation. Changes are separated using linear combinations of sensor output vectors, transformed to the desired coordinate frame, and used to update the previous measurements. Practical considerations for a head-tracking application are discussed.  相似文献   
125.
Coherent optical systems, because of their basic similarity to coherent radar systems, can be used to simulate many of the characteristics of the latter. This paper discusses the use of a coherent optical system for the simulation of the range and azimuth ambiguities that sometimes occur in radar systems. The optical configurations for implementing these simulations are described in detail, and extensive experimental results are presented.  相似文献   
126.
A Detection Algorithm for Optical Targets in Clutter   总被引:2,自引:0,他引:2  
There is active interest in the development of algorithms for detecting weak stationary optical and IR targets in a heavy opticalclutter background. Often only poor detectability of low signal-to-noise ratio (SNR) targets is achieved when the direct correlation method is used. In many cases, this is partly obviated by using detection with correlated reference scenes [1, 2].This paper uses the experimentally justified assumption that most optical clutter can be modeled as a whitened Gaussian randomprocess with a rapidly space-varying mean and a more slowlyvarying covariance [2]. With this assumption, a new constant falsealarm rate (CFAR) detector is developed as an application of the classical generalized maximum likelihood ratio test of Neyman and Pearson. The final CFAR test is a dimensionless ratio. This test exhibits the desirable property that its probability of a false alarm(PFA) is independent of the covariance matrix of the actual noiseencountered. When the underlying noise processes are complex intime, similar considerations can yield a sidelobe canceler CFARdetection criterion for radar and communications. Performance analyses based on the probability of detection (PD)versus signal-to-noise ratio for several given fixed false alarm probabilities are presented. Finally these performance curves are validated by computer simulations of the detection process which use real image data with artificially implanted signals.  相似文献   
127.
A brief review of various theoretical approaches to model accretion disks is presented. Emphasis is given to models that determine self-consistently the structure of a disk together with the radiation field. It is argued that a proper treatment of the vertical structure is essential for calculating theoretical spectra to be compared with observations. In particular, it is shown that hot layers above an accretion disk (sometimes called disk chromospheres or coronae), whose presence is indicated by recent UV observations of strong emission lines of highly ionized species, may be explained using simple energy balance arguments.1987–88 JILA Visiting Fellow.This work was in part supported by a NASA grant ADP U-003-88 (Plavec and Hubeny). I also wish to thank the organizers of the IAU Colloquium 107 for the travel grant which enabled me to attend the meeting.  相似文献   
128.
A refined stochastic model for the errors of the Loran-C radio navigation aid is described, and it is shown how this model can be used to improve the performance of integrated navigation systems. In addition to the usual propagation errors, Loran-C time of arrival measurements are occasionally plagued with sudden intermittent errors of a particular magnitude and caused by receiver cycle selection errors. These result in sudden large jumps in the calculated position solution. The Loran-C error has been modeled as the sum of a diffusion process, representing the normal propagating errors, and a pure jump process of Poisson type, representing the cycle selection errors. A simple integrated navigation system is then described, based on the Loran-C model and the standard dead reckoning (heading and speed) system model. Assuming that the observed process is governed by a linear stochastic difference equation, a recursive linear unbiased minimum variance filter is developed, from which the Loran-C and dead reckoning errors, and hence position and velocity, can be estimated  相似文献   
129.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   
130.
Polish radar research and development since 1953 is reviewed, covering the development and production of surveillance radars, height finders, tracking radars, air traffic control (ATC) radars and systems, and marine and Doppler radars. Some current work, including an L-band ATC radar for enroute control, a weather channel for primary surveillance radar, signal detection in non-Gaussian clutter, adaptive MTI filters and postdetection filtering, and a basic approach to radar polarimetry, is examined.<>  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号