首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
航空   14篇
航天技术   7篇
航天   7篇
  2021年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1978年   2篇
  1975年   2篇
  1970年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有28条查询结果,搜索用时 46 毫秒
21.
Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel.  相似文献   
22.
The RAPID spectrometer (Research with Adaptive Particle Imaging Detectors) for the Cluster mission is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20–400 keV for electrons, 40 keV–1500 keV (4000 keV) for hydrogen, and 10 keV nucl-1–1500 keV (4000 keV) for heavier ions. Novel detector concepts in combination with pin-hole acceptance allow the measurement of angular distributions over a range of 180° in polar angle for either species. Identification of the ionic component (particle mass A) is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Details of the detection techniques and in-orbit operations are described. Scientific objectives of this investigation are highlighted by the discussion of selected critical issues in geospace.  相似文献   
23.
24.
Three-dimensional distributions for 24.0–44.5 keV protons (ions) are presented from the ISEE-1 medium energy particles instrument during a magnetopause traversal at 01:10 UT on 20 November 1977. Local time of the traversal was 1030. Ion fluxes were observed coming generally from the subsolar region, but over a wide range of latitudes. Enhanced fluxes were observed at the magnetopause crossing with strong components from the subsolar region and from the +Z SE direction. These observations are compared with the simultaneous electric field observations presented by Mozer et al. (1978). Ion streaming in a direction consistent with the Y-component of the drift velocity was observed whereas streaming along the X and Z-components is not seen. Based on energy arguments we conclude that in this case, 24 keV ions are not the major energy carrier of the locally measured · dissipation.  相似文献   
25.
We present a general modeling scheme for investigating the possibility of photosynthesis-based life on extrasolar planets. The scheme focuses on the identification of the habitable zone in main-sequence-star planetary systems with planets of Earth mass and size. Our definition of habitability is based on the long-term possibility of photosynthetic biomass production as a function of mean planetary surface temperature and atmospheric CO2-content. All the astrophysical, climatological, biogeochemical, and geodynamic key processes involved in the generation of photosynthesis-driven life conditions are taken into account. Implicitly, a co-genetic origin of the central star and the orbiting planet is assumed. The numerical solution of an advanced geodynamic model yields realistic look-up diagrams for determining the limits of photosynthesis in extrasolar planetary systems, assuming minimum CO2 levels set by the demand of C4 photosynthesis.  相似文献   
26.
The Second International Vortex Flow Experiment provided a variety of experimental data for a 65° swept delta wing sharp and blunt leading edges. Flow details including forces and moments, surface pressures, Pressure Sensitive Paint measurements, and off-surface flow variables from Particle Image Velocimetry were made available for comparisons with computational simulations. This paper concentrates on some typical problems of delta wings with rounded leading edges at subsonic speed: the prediction of the main leading edge separation, the generation of the second inner vortex, the effect of transition, and Reynolds number effects.  相似文献   
27.
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.  相似文献   
28.
Energetic particle instrumentation on the Polar satellite has discovered that significant fluxes of energetic particles are continuously present in the region of the dayside magnetosphere where they cannot be stably trapped. This region is associated with either open magnetic field lines or a magnetic topology associated with pseudo-trapping. Two distinct features [Time-Energy Dispersion (TED) signatures and Cusp Energetic Particle (CEP) events] are observed in these energetic particle fluxes that strongly suggest a local acceleration of mostly shocked solar wind particles. As the solar wind particles ram themselves into the cusp geometry, they form diamagnetic cavities with strong turbulence that are capable of accelerating particles to energies of 100s and 1000s of kiloelectronvolts. This process forms a layer of energetic particles on the magnetopause as well as permits such particles to enter via drift the equatorial nightside magnetosphere to distances as close as six Earth radii under the influence of gradient and curvature effects in the local magnetic field. The fluxes of these particles have all of the properties associated with the ring current and can supply the magnitude of the cross tail current required. ISEE-1 energetic particle data and their pitch angle distributions [PAD] are examined at the magnetic equatorial plane on the night side to investigate and possibly validate the insights gains from the Polar data and energetic particle trajectory tracing in a realistic magnetic field. The existence and properties of butterfly-type PADs strongly supports the concept of a dayside high latitude source of energetic particle fluxes. Because the CEP process is impulsive and time variable the charge separation produced by the drifting electrons (eastward) and ions (westward) on the magnetospheric nightside may be responsible for the cross tail electric field that has been ascribed to the reconnection/convection process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号