首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
航空   17篇
航天技术   1篇
航天   2篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   5篇
  2004年   3篇
  2003年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
11.
12.
The origin of the anisotropy in the shape of the Martian obstacle and bow shock is analyzed using Mars Global Surveyor observations. The influence of MHD or ion pick-up effects on Martian obstacle position was to be small found, however, localized Martian crustal magnetization increases the thickness of the downstream planetary magnetotail by 500–1000 km in agreement with earlier Phobos 2 observations. A new analytical model is presented for Martian obstacle shape variation for different solar wind ram pressure. Elongation of the Martian BS cross-section in the direction perpendicular to IMF was confirmed while the shift of this cross section in the +Y direction of Martian interplanetary medium reference frame was discovered. The shift of BS cross section in the direction of interplanetary electric field was not revealed thus not conforming the idea that mass-loading play some role in BS control.  相似文献   
13.
Bow Shock and Upstream Phenomena at Mars   总被引:1,自引:0,他引:1  
Mazelle  C.  Winterhalter  D.  Sauer  K.  Trotignon  J.G.  Acuña  M.H.  Baumgärtel  K.  Bertucci  C.  Brain  D.A.  Brecht  S.H.  Delva  M.  Dubinin  E.  Øieroset  M.  Slavin  J. 《Space Science Reviews》2004,111(1-2):115-181
Mars Global Surveyor is the sixth spacecraft to return measurements of the Martian bow shock. The earlier missions were Mariner 4 (1964), Mars 2 and 3 (1972), Mars 5 (1975) and Phobos 2 (1989) (see reviews by Gringauz, 1981; Slavin and Holzer, 1982; Russell, 1985; Vaisberg, 1992a,b; Zakharov, 1992). Previous investigations of planetary bow shocks have established that their position, shape and jump conditions are functions of the upstream flow parameters and the nature of the solar wind — planet interaction (Spreiter and Stahara, 1980; Slavin et al., 1983; Russell, 1985). At Mars, however, the exact nature of the solar wind interaction was elusive due to the lack of low altitude plasma and magnetic field measurements (e.g., Axford, 1991). In fact our knowledge of the nature of the interaction of Mars with the solar wind was incomplete until the arrival of MGS and the acquisition of close-in magnetic field data (Acuña et al., 1998). As detailed by a series of review papers in this monograph, the Mars Global Surveyor (MGS) mission has now shown that the Mars environment is very complex with strong, highly structured crustal magnetic remnants in the southern hemisphere, while the northern hemisphere experiences the direct impingement of solar wind plasma. This review paper first presents a survey of the observations on the Martian bow shock and the upstream phenomena in the light of results from all the missions to date. It also discusses the kinetic properties of the Martian bow shock compared to the predictions of simulations studies. Then it examines the current status of understanding of these phenomena, including the possible sources of upstream low-frequency waves and the interpretations of localized disturbances in the upstream solar wind around Mars. Finally, it briefly discusses the open issues and questions that require further study.  相似文献   
14.
THE CLUSTER MAGNETIC FIELD INVESTIGATION   总被引:6,自引:0,他引:6  
The Cluster mission provides a new opportunity to study plasma processes and structures in the near-Earth plasma environment. Four-point measurements of the magnetic field will enable the analysis of the three dimensional structure and dynamics of a range of phenomena which shape the macroscopic properties of the magnetosphere. Difference measurements of the magnetic field data will be combined to derive a range of parameters, such as the current density vector, wave vectors, and discontinuity normals and curvatures, using classical time series analysis techniques iteratively with physical models and simulation of the phenomena encountered along the Cluster orbit. The control and understanding of error sources which affect the four-point measurements are integral parts of the analysis techniques to be used. The flight instrumentation consists of two, tri-axial fluxgate magnetometers and an on-board data-processing unit on each spacecraft, built using a highly fault-tolerant architecture. High vector sample rates (up to 67 vectors s-1) at high resolution (up to 8 pT) are combined with on-board event detection software and a burst memory to capture the signature of a range of dynamic phenomena. Data-processing plans are designed to ensure rapid dissemination of magnetic-field data to underpin the collaborative analysis of magnetospheric phenomena encountered by Cluster.  相似文献   
15.
The Local Interstellar Cloud (LIC) surrounds the Solar System and sets the boundary conditions for the heliosphere. Using both in situ and absorption line data towards ε CMa we are able to constrain both the ionization and the gas phase abundances of the LIC gas at the Solar Location. We find that the abundances are consistent with all of the carbonaceous dust grains having been destroyed, and in fact with a supersolar abundance of C. The constituents of silicate grains, Si, Mg, and Fe, appear to be sub-solar, indicating that silicate dust is present in the LIC. N, O and S are close to the solar values.  相似文献   
16.
Spacecraft observations have established that all known planets with an internal magnetic field, as part of their interaction with the solar wind, possess well-developed magnetic tails, stretching vast distances on the nightside of the planets. In this review paper we focus on the magnetotails of Mercury, Earth, Jupiter and Saturn, four planets which possess well-developed tails and which have been visited by several spacecraft over the years. The fundamental physical processes of reconnection, convection, and charged particle acceleration are common to the magnetic tails of Mercury, Earth, Jupiter and Saturn. The great differences in solar wind conditions, planetary rotation rates, internal plasma sources, ionospheric properties, and physical dimensions from Mercury’s small magnetosphere to the giant magnetospheres of Jupiter and Saturn provide an outstanding opportunity to extend our understanding of the influence of such factors on basic processes. In this review article, we study the four planetary environments of Mercury, Earth, Jupiter and Saturn, comparing their common features and contrasting their unique dynamics.  相似文献   
17.
We compare CLOUDY predictions for the equilibrium ionization in the interstellar cloud surrounding the solar system with pick-up ion data. The incident radiation field includes contributions from hot stars, the emission from the conductive cloud boundary and the diffuse FUV back-ground. To within the observational uncertainties, CLOUDY predictions for the ratios n(He)/n(O), n(N)/n(O), n(Ne)/n(O), and n(He)/n(Ne) are consistent with pick-up ion data, provided that O and N are filtered by 50% in the heliopause region and the outer heliosphere as predicted by others. Thus, the steady-state ionization model and assumed radiation field appear approximately valid. However, the youth and low intervening column density towards the Vela pulsar leave open the possibility that the parent supernova explosion 10,500 years ago, and 200 pc distant, may also have affected LISM ionization, although the mechanism is uncertain. Support for this last possibility is provided by the apparent signature of the Vela explosion in the terrestrial geological record.Abbreviations ISM Interstellar Medium - FUV Far Ultraviolet - EUV Extreme Ultraviolet - SNR SN remnant - SXRB SXR Background - LISM Local Interstellar Matter  相似文献   
18.
The small intrinsic magnetic field of Mercury together with its proximity to the Sun makes the Hermean magnetosphere unique in the context of comparative magnetosphere study. The basic framework of the Hermean magnetosphere is believed to be the same as that of Earth. However, there exist various differences which cause new and exciting effects not present at Earth to appear. These new effects may force a substantial correction of our naïve predictions concerning the magnetosphere of Mercury. Here, we outline the predictions based on our experience at Earth and what effects can drastically change this picture. The basic structure of the magnetosphere is likely to be understood by scaling the Earth’s case but its dynamic aspect is likely modified significantly by the smallness of the Hermean magnetosphere and the substantial presence of heavy ions coming from the planet’s surface.  相似文献   
19.
Verigin  M.I.  Slavin  J.  Szabo  A.  Kotova  G.A.  Remizov  A.P.  Rosenbauer  H.  Livi  S.  Szegö  K.  Tátrallyay  M.  Schwingenschuh  K.  Zhang  T.-L. 《Space Science Reviews》2004,111(1-2):233-243
Detailed analysis of disturbances observed on 24 March, 1989 far upstream of the usual Martian bow shock position was completed with the use of the planetary obstacle and bow shock models relevant for the period of Phobos 2 observations and for low Mach numbers, respectively. It is proven that the system of discontinuities observed in the solar wind between 18:42 and 19:36 UT was the consequence of unusually distant planetary bow shock excursions. The cause was unusually small ρV 2 and M a values in the solar wind flow.  相似文献   
20.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号