首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  国内免费   2篇
航空   22篇
航天技术   11篇
航天   14篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2002年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   5篇
  1982年   2篇
  1980年   1篇
排序方式: 共有47条查询结果,搜索用时 781 毫秒
41.
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000–2300 cm?1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89–1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid’s surface.  相似文献   
42.
We present quantitative spectroscopic NLTE analyses of the components of well detached early type binaries (DH Cep, Y Cyg, V453 Cyg, and CW Cep). The position of the stars in the logL-logT eff diagram is discussed. We find significantly higher temperatures for the components of Y Cygni from spectral analysis by means of unblanketed NLTE model photospheres than those given by the orbit analysis. Therefore the comparison with evolutionary tracks yields larger masses. The spectroscopic temperatures of V453 Cygni and CW Cephei agree with the orbit data, but the evolutionary tracks point to larger masses also. However, if we account for some 2000K lower effective temperatures due to line blanketing, the luminosities, temperatures and masses of all stellar components are in good agreement, except for the case of DH Cep.  相似文献   
43.
The Japanese lunar explorer SELENE (Kaguya), which was launched on September 14th, 2007, was the target of VLBI observations over the period November 2007 to June 2009. These observations were made in order to improve the lunar gravity field model, in particular the lower degree coefficients and the model near the limb. Differential VLBI Radio sources, called VRAD instruments, were on-board the subsatellites, Rstar (Okina) and Vstar (Ouna), and the radio signals were observed by the Japanese VERA (VLBI Exploration of Radio Astrometry) network, and an international VLBI network. Multi-frequency and same-beam VLBI techniques were utilized and were essential aspects of the successful observing program. Multi-frequency VLBI was employed in order to improve the accuracy of the orbit determination obtained from the phase delay from the narrow-band satellite signals, while the same-beam VLBI method was used to resolve the cycle ambiguity which is inherent in the multi-frequency VLBI method. The observations were made at three S-band frequencies (2212, 2218 and 2287 MHz), and one X-band frequency (8456 MHz). We have succeeded in correlating the recorded signals from Okina/Ouna, and we obtained phase delays with an accuracy of several pico-seconds at S-band.  相似文献   
44.
Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) is a formation flight testing facility consisting of three satellites operating inside the International Space Station (ISS). The goal is to use the long term microgravity environment of the ISS to mature formation flight and docking algorithms. The operations processes of SPHERES have also matured over the course of the first seven test sessions. This paper describes the evolution of the SPHERES program operations processes from conception to implementation to refinement through flight experience. Modifications to the operations processes were based on experience and feedback from Marshall Space Flight Center Payload Operations Center, USAF Space Test Program office at Johnson Space Center, and the crew of Expedition 13 (first to operate SPHERES on station). Important lessons learned were on aspects such as test session frequency, determination of session success, and contingency operations. This paper describes the tests sessions; then it details the lessons learned, the change in processes, and the impact on the outcome of later test sessions. SPHERES had very successful initial test sessions which allowed for modification and tailoring of the operations processes to streamline the code delivery and to tailor responses based on flight experiences.  相似文献   
45.
The evolution of a site where homologous flares occured on June 8, 1980 is analysed by using observations both in the photosphere and in the chromosphere. The homology is discussed through space, energy and dynamical aspects. The criteria are used in order to propose the definition of a coefficient of homology.  相似文献   
46.
Orbit maintenance is a major cost factor for Earth satellites in specialized orbits, such as a repeating ground track, or in formations. While autonomous attitude control is well established, the spacecraft's orbit is usually uncontrolled or maintained by ground station commands. For small, lower cost satellites, operations costs can be a dominant element of both cost and risk. This implies a need for low-cost autonomous orbit maintenance in order to allow such systems to be economically viable, particularly in today's constrained budget environment.

In addition, if the position of the spacecraft is controlled, it is therefore known in advance. Thus, mission planning can be done as far in advance as desired, without the need for replanning and frequent updating due to unpredictable orbit decay. An interesting characteristic of autonomous orbit maintenance is that it typically requires less software, and less complex software, than does orbit control from the ground. In many cases, an onboard orbit propagator is not needed.  相似文献   

47.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号