全文获取类型
收费全文 | 6021篇 |
免费 | 41篇 |
国内免费 | 18篇 |
专业分类
航空 | 2741篇 |
航天技术 | 2142篇 |
综合类 | 24篇 |
航天 | 1173篇 |
出版年
2021年 | 62篇 |
2019年 | 41篇 |
2018年 | 147篇 |
2017年 | 111篇 |
2016年 | 101篇 |
2015年 | 49篇 |
2014年 | 171篇 |
2013年 | 181篇 |
2012年 | 184篇 |
2011年 | 280篇 |
2010年 | 190篇 |
2009年 | 315篇 |
2008年 | 375篇 |
2007年 | 184篇 |
2006年 | 144篇 |
2005年 | 181篇 |
2004年 | 162篇 |
2003年 | 203篇 |
2002年 | 132篇 |
2001年 | 195篇 |
2000年 | 96篇 |
1999年 | 125篇 |
1998年 | 155篇 |
1997年 | 121篇 |
1996年 | 115篇 |
1995年 | 157篇 |
1994年 | 145篇 |
1993年 | 94篇 |
1992年 | 124篇 |
1991年 | 63篇 |
1990年 | 50篇 |
1989年 | 114篇 |
1988年 | 51篇 |
1987年 | 52篇 |
1986年 | 45篇 |
1985年 | 142篇 |
1984年 | 126篇 |
1983年 | 104篇 |
1982年 | 115篇 |
1981年 | 155篇 |
1980年 | 65篇 |
1979年 | 45篇 |
1978年 | 47篇 |
1977年 | 33篇 |
1976年 | 42篇 |
1975年 | 36篇 |
1974年 | 30篇 |
1973年 | 29篇 |
1972年 | 28篇 |
1971年 | 28篇 |
排序方式: 共有6080条查询结果,搜索用时 14 毫秒
301.
H. Raichur B. Paul S. Naik N. Bhatt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2785-2787
High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538−52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution.
Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA. 相似文献
302.
N. Kylafis D. Giannios D. Psaltis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2810-2812
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations. 相似文献
303.
T. Muoz-Darias I.G. Martínez-Pais J. Casares T.R. Marsh R. Cornelisse D. Steeghs V.S. Dhillon P.A. Charles 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2762-2764
We present preliminary results of a simultaneous X-ray/optical campaign of the prototypical LMXB Sco X-1 at 1–10 Hz time resolution. Lightcurves of the high excitation Bowen/HeII emission lines and a red continuum at λc 6000 Å were obtained through narrow interference filters with ULTRACAM, and these were cross-correlated with simultaneous RXTE X-ray lightcurves. We find evidence for correlated variability, in particular when Sco X-1 enters the Flaring branch. The Bowen/HeII lightcurves lag the X-ray lightcurves with a light travel time which is consistent with reprocessing in the companion star while the continuum lightcurves have shorter delays consistent with reprocessing in the accretion disc. 相似文献
304.
Mende S.B. Heetderks H. Frey H.U. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Tremsin A.S. Spann J. Dougani H. Fuselier S.A. Magoncelli A.L. Bumala M.B. Murphree S. Trondsen T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response. 相似文献
305.
Mende S.B. Heetderks H. Frey H.U. Stock J.M. Lampton M. Geller S.P. Abiad R. Siegmund O.H.W. Habraken S. Renotte E. Jamar C. Rochus P. Gerard J.-C. Sigler R. Lauche H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%. 相似文献
306.
Green J.L. Benson R.F. Fung S.F. Taylor W.W.L. Boardsen S.A. Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N
e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R
E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N
e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible. 相似文献
307.
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial. 相似文献
308.
We describe a numerical integral-projection method used by the authors for the approximate solution of systems of interrelated two-dimensional linear boundary-value problems in mechanics of composite shell systems. The method is based on discretization in each shell substructure of a two-dimensional problem along one of coordinates using a projection-grid variant of the Galerkin-Petrov method and its subsequent transformation to a system of ordinary differential equations; by integration and introduction of sought functions as unknown derivatives, the system is reduced to a system of integral equations being solved by the method of mechanical quadratures. The method is characterized by the fact that its application requires no additional conditions of conformity with discretization parameters of substructures being mated. 相似文献
309.
A. Sh. Dzhabrailov Yu. V. Klochkov S. S. Marchenko A. P. Nikolaev 《Russian Aeronautics (Iz VUZ)》2007,50(2):115-120
We demonstrate that it is possible to express each component of the displacement vector for the interior point of the finite element (FE) through all components of nodal unknowns in curvilinear coordinates. The effectiveness of the valid technique of vector approximation for displacement fields has been verified on an example. 相似文献
310.
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched
detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant
pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated
along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times
(∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time
histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward
from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints
of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances
and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and
two events with small field-aligned gradients.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献