全文获取类型
收费全文 | 4466篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
航空 | 2086篇 |
航天技术 | 1604篇 |
综合类 | 16篇 |
航天 | 780篇 |
出版年
2021年 | 44篇 |
2019年 | 25篇 |
2018年 | 104篇 |
2017年 | 73篇 |
2016年 | 76篇 |
2015年 | 39篇 |
2014年 | 130篇 |
2013年 | 138篇 |
2012年 | 143篇 |
2011年 | 193篇 |
2010年 | 127篇 |
2009年 | 216篇 |
2008年 | 293篇 |
2007年 | 128篇 |
2006年 | 107篇 |
2005年 | 138篇 |
2004年 | 117篇 |
2003年 | 153篇 |
2002年 | 89篇 |
2001年 | 153篇 |
2000年 | 74篇 |
1999年 | 99篇 |
1998年 | 120篇 |
1997年 | 87篇 |
1996年 | 90篇 |
1995年 | 124篇 |
1994年 | 121篇 |
1993年 | 64篇 |
1992年 | 95篇 |
1991年 | 53篇 |
1990年 | 36篇 |
1989年 | 88篇 |
1988年 | 40篇 |
1987年 | 42篇 |
1986年 | 36篇 |
1985年 | 96篇 |
1984年 | 86篇 |
1983年 | 75篇 |
1982年 | 86篇 |
1981年 | 118篇 |
1980年 | 41篇 |
1979年 | 36篇 |
1978年 | 32篇 |
1977年 | 25篇 |
1976年 | 28篇 |
1975年 | 22篇 |
1974年 | 22篇 |
1973年 | 23篇 |
1972年 | 23篇 |
1971年 | 21篇 |
排序方式: 共有4486条查询结果,搜索用时 15 毫秒
741.
Robert J. HaydukWalter S. ScottGerald D. WalbergJames J. ButtsRichard D. Starr 《Acta Astronautica》1996,39(9-12):677-686
The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of “Clark,” a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA. 相似文献
742.
The defruiter that is employed in the Air Traffic Control Radar Beacon System (ATCRBS) to prefilter asynchronous replies has a complex impact on the detection, estimation and validation properties of the detection subsystem. Its positive and negative effects are quantitatively enumerated via a simulation of the beacon processing subsystem of the Automated Radar Terminal System (ARTS III). It is concluded that the disadvantages of using the present-day defruiter in the ARTS III digital processing channel outweigh the advantages when fruit rates are below several thousand per scan. As an alternative to the total elimination of the defruiter a more general class of preprocessors is defined and their input-output relationships are derived using a Markov Chain formulation. These are found to represent an improvement over the current defruiter in that the positive effects of defruiting are retained while some of the negative effects are reduced. 相似文献
743.
Ahmad F. Frazer G.J. Kassam S.A. Amin M.G. 《IEEE transactions on aerospace and electronic systems》2004,40(1):206-220
A coarray-based near-field, wideband synthetic aperture beamformer using stepped-frequency signal synthesis and post-data acquisition processing is presented. While coarray techniques offer significant reduction in the number of array elements for a given angular resolution, the hybrid subarray-stepped frequency realization of wideband systems simplifies implementations and offers flexibility in beamforming. Proof of concept is provided using real data collected in an anechoic chamber for several pulse shapes and array weightings. 相似文献
744.
Timothy S. Kokan John R. Olds Jerry M. Seitzman Peter J. Ludovice 《Acta Astronautica》2009,65(7-8):967-986
A technique for computationally determining the thermophysical properties of high-energy-density matter (HEDM) propellants is presented. HEDM compounds are of interest in the liquid rocket engine industry due to their high density and high energy content relative to existing industry-standard propellants. In order to accurately model rocket engine performance, cost and weight in a conceptual design environment, several thermodynamic and physical properties are required over a range of temperatures and pressures. The approach presented here combines quantum mechanical and molecular dynamic (MD) calculations and group additivity methods. A method for improving the force field model coefficients used in the MD is included. This approach is used to determine thermophysical properties for two HEDM compounds of interest: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). The modified force field approach provides results that more accurately match experimental data than the unmodified approach. Launch vehicle and Lunar lander case studies are presented to quantify the system level impact of employing quadricyclane and DMAZ rather than industry standard propellants. In both cases, the use of HEDM propellants provides reductions in vehicle mass compared to industry standard propellants. The results demonstrate that HEDM propellants can be an attractive technology for future launch vehicle and Lunar lander applications. 相似文献
745.
O. Alexandrova C. H. K. Chen L. Sorriso-Valvo T. S. Horbury S. D. Bale 《Space Science Reviews》2013,178(2-4):101-139
Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling $k_{\perp}^{-5/3}$ for the perpendicular cascade and $k_{\|}^{-2}$ for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a ?3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to ?2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by $\sim k_{\perp}^{-\alpha}\exp(-k_{\perp}\ell_{d})$ , with α?8/3 and the dissipation scale ? d close to the electron Larmor radius ? d ?ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate. 相似文献
746.
J. B. Blake P. A. Carranza S. G. Claudepierre J. H. Clemmons W. R. Crain Jr. Y. Dotan J. F. Fennell F. H. Fuentes R. M. Galvan J. S. George M. G. Henderson M. Lalic A. Y. Lin M. D. Looper D. J. Mabry J. E. Mazur B. McCarthy C. Q. Nguyen T. P. O’Brien M. A. Perez M. T. Redding J. L. Roeder D. J. Salvaggio G. A. Sorensen H. E. Spence S. Yi M. P. Zakrzewski 《Space Science Reviews》2013,179(1-4):383-421
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented. 相似文献
747.
Parker D. E. Basnett T. A. Brown S. J. Gordon M. Horton E. B. Rayner N. A. 《Space Science Reviews》2000,94(1-2):309-320
A survey is given of the available instrumental data for monitoring and analysis of climatic variations. We focus on temperature measurements, both over land and ocean, at the surface and aloft.Over land, the older observations were subject to exposure changes which may not have been fully compensated. The effects of urbanization have been largely avoided in studies of climatic change over the last 150 years. There are few records for pre-1850 outside Europe and eastern North America, and the global network shows a recent decline. Over the ocean, sea surface temperature (SST) has been measured using buckets, engine intakes, hull sensors, buoys, and satellites. Many of these data have been effectively homogenized, but new challenges arise as observing systems evolve. Available SST and marine air temperature datasets begin in the 1850s. The data are concentrated in shipping lanes especially before 1900, and very sparse during the world wars, but additional historical data are being digitized.The radiosonde record is short (40 years) and has major gaps over the oceans, tropics and Southern Hemisphere. Instrumental heterogeneities are beginning to be assessed and removed using physical and statistical techniques. The MSU record is complete but only began in 1979, and is not highly resolved in the vertical: major biases, mainly affecting the lower-tropospheric retrieval, have been reduced as a result of recent analyses.Advanced interpolation or data-assimilation techniques are being applied to these data, but the results must be interpreted with care. 相似文献
748.
The mean and covariance of a Kalman filter residual are computed for specific cases in which the Kalman filter model differs from a linear model that accurately represents the true system (the truth model). Multiple model adaptive estimation (MMAE) uses a bank of Kalman filters, each with a different internal model, and a hypothesis testing algorithm that uses the residuals from this bank of Kalman filters to estimate the true system model. At most, only one Kalman filter model will exactly match the truth model and will produce a residual whose mean and standard deviation have already been analyzed. All of the other filters use internal models that mismodel the true system. We compute the effects of a mismodeled input matrix, output matrix, and state transition matrix on these residuals. The computed mean and covariance are compared with simulation results of flight control failures that correspond to mismodeled input matrices and output matrices 相似文献
749.
H. M. Cuppen C. Walsh T. Lamberts D. Semenov R. T. Garrod E. M. Penteado S. Ioppolo 《Space Science Reviews》2017,212(1-2):1-58
The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of \({\sim}25\) experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions. 相似文献
750.
The Juno Waves Investigation 总被引:1,自引:0,他引:1
W. S. Kurth G. B. Hospodarsky D. L. Kirchner B. T. Mokrzycki T. F. Averkamp W. T. Robison C. W. Piker M. Sampl P. Zarka 《Space Science Reviews》2017,213(1-4):347-392
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter’s magnetosphere and some have been directly associated with Jupiter’s auroras. The strongest radio emissions are associated with Io’s interaction with Jupiter’s magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter’s upper atmosphere generating the auroras. Since the exploration of Jupiter’s polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno’s payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission. 相似文献