首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7008篇
  免费   21篇
  国内免费   13篇
航空   3185篇
航天技术   2473篇
综合类   195篇
航天   1189篇
  2021年   56篇
  2019年   40篇
  2018年   154篇
  2017年   107篇
  2016年   100篇
  2015年   50篇
  2014年   175篇
  2013年   189篇
  2012年   199篇
  2011年   271篇
  2010年   180篇
  2009年   303篇
  2008年   392篇
  2007年   189篇
  2006年   167篇
  2005年   204篇
  2004年   181篇
  2003年   231篇
  2002年   234篇
  2001年   285篇
  2000年   106篇
  1999年   167篇
  1998年   190篇
  1997年   142篇
  1996年   173篇
  1995年   214篇
  1994年   187篇
  1993年   102篇
  1992年   152篇
  1991年   75篇
  1990年   60篇
  1989年   133篇
  1988年   59篇
  1987年   63篇
  1986年   63篇
  1985年   180篇
  1984年   162篇
  1983年   129篇
  1982年   155篇
  1981年   202篇
  1980年   64篇
  1979年   48篇
  1978年   50篇
  1977年   41篇
  1976年   41篇
  1975年   38篇
  1974年   47篇
  1972年   41篇
  1971年   40篇
  1970年   39篇
排序方式: 共有7042条查询结果,搜索用时 218 毫秒
441.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   
442.
In this work, the foF2 and hmF2 parameters at the conjugate points near the magnetic equator of Southeast Asia are studied and compared with the International Reference Ionosphere (IRI) model. Three ionosondes are installed nearly along the magnetic meridian of 100°E; one at the magnetic equator, namely Chumphon (10.72°N, 99.37°E, dip angle 3.0°N), and the other two at the magnetic conjugate points, namely Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.30°E, dip angle 10.1°S). The monthly hourly medians of the foF2 and hmF2 parameters are calculated and compared with the predictions obtained from the IRI-2007 model from January 2004 to February 2007. Our results show that: the variations of foF2 and hmF2 predicted by the IRI-2007 model generally show the similar feature to the observed data. Both parameters generally show better agreement with the IRI predictions during daytime than during nighttime. For foF2, most of the results show that the IRI model overestimates the observed foF2 at the magnetic equator (Chumphon), underestimates at the northern crest (Chiang Mai) and is close to the measured ones at the southern crest of the EIA (Kototabang). For hmF2, the predicted hmF2 values are close to the hmF2(M3000F2OBS) during daytime. During nighttime, the IRI model gives the underestimation at the magnetic equator and the overestimation at both EIA crests. The results are important for the future improvements of the IRI model for foF2 and hmF2 over Southeast Asia region.  相似文献   
443.
Numerical solutions for signal processing are described in this work as a contribution to study of echo detection methods for ionospheric sounder design. The ionospheric sounder is a high frequency radar for geophysical applications. The main detection approach has been done by implementing the spread-spectrum techniques using coding methods to improve the radar’s range resolution by transmitting low power. Digital signal processing has been performed and the numerical methods were checked. An algorithm was proposed and its computational complexity was calculated.  相似文献   
444.
The propagation of Jovian electrons in interplanetary space was modelled by solving the relevant transport equation numerically through the use of stochastic differential equations. This approach allows us to calculate, for the first time, the propagation time of Jovian electrons from the Jovian magnetosphere to Earth. Using observed quiet-time increases of electron intensities at Earth, we also derive values for this quantity. Comparing the modelled and observed propagation times we can gauge the magnitude of the transport parameters sufficiently to place a limit on the 6 MeV Jovian electron flux reaching Earth. We also investigate how the modelled propagation time, and corresponding Jovian electron flux, varies with the well-known ∼13 month periodicity in the magnetic connectivity of Earth and Jupiter. The results show that the Jovian electron intensity varies by a factor of ∼10 during this cycle of magnetic connectivity.  相似文献   
445.
Zonal velocity and temperature daily global reanalysis data of 30 years are used to search seasonally steady planetary disturbances in the middle troposphere (400 hPa) and middle stratosphere (10 hPa). Significant wavenumber 1, 2 and 3 modes are found. Constant phase lines of zonal velocity 1 modes exhibit significant inclination angles with respect to the meridians. The winter hemisphere generally shows a more significant presence of structures. The Northern Hemisphere (NH) exhibits all over the year a larger amount of structures and more intense amplitudes than the Southern Hemisphere (SH). Middle latitudes exhibit the most significant cases and low latitudes the least significant ones. Longitudinally oriented land–sea transitions at ±±65° and −35° latitudes appear to play a significant role for the presence of steady planetary modes. The stratosphere exhibits a much simpler picture than the troposphere. Large scale structures with respectively NE–SW (NH) and NW–SE (SH) tilts in the observed temperature and zonal velocity constant phase lines recall the quasi-stationary Rossby wave trains that favor the poleward transport of angular momentum.  相似文献   
446.
A key aspect for understanding the astrobiological potential of planets and moons in the Solar system is the analysis of material embedded in or underneath icy layers on the surface. In particular in case of the icy crust of Jupiters moon Europa such investigation would be of greatest interest. For a Europa lander to be launched in the 2020–2030 timeframe, we propose to use a simplified instrumented melting probe which is able to access and sample depths of a few meters without the necessity of heavy and complicated drilling equipment.  相似文献   
447.
In this paper we start from the most recently observed fact that the solar wind plasma after passage over the termination shock is still supersonic with a Mach number of about 2. To explain this unexpected phenomenon and to predict the evolution of properties of the downstream plasma flow we here consider a two-fluid proton plasma with pick-up protons as a separate suprathermal, second proton fluid. We then formulate a self-consistent system of hydrodynamical conservation equations coupling the two fluids by dynamical and thermodynamical coupling terms and taking into account the effects of newly incorporated protons due to charge exchange with the H-atoms in the heliosheath. This then allows us to predict that in the most probable case the solar wind protons will become subsonic over a distance of about 30 AU downstream of the shock. As we can also show, it may, however, happen that the plasma mixture later again reconverts to a supersonic signature and has to undergo a second shock before meeting the heliopause.  相似文献   
448.
A laboratory experiment helps to understand the light scattering property of regolith like samples with known compositions and other physical parameters. The laboratory data so obtained can be compared with the existing in situ data on celestial objects like asteroids. Further, it may be analyzed with the help of various theoretical models to understand the light scattering processes from regolith more clearly. In this work we have performed laboratory based photometry of the light scattered from the surfaces of powdered alumina (Al2O3) at various tilt angles of the sample and at large phase angles, with the particles having diameter 0.3 μm. The wavelength of observation was 632.8 nm. These data have been fitted by a surface scattering model originally suggested by Hapke. Instead of using empirical Henyey–Greenstein phase function to fix the values of albedo and phase function to be used within Hapke formula, we have used Mie theory for the same. This approach helped us to determine the single particle properties such as particle diameter and complex refractive index from surface scattering phase curve alone. Mie theory depends only on the size parameter X(=2π(radius/wavelength)) and complex refractive index (nk) of the material. Since the absorption coefficient (k) for alumina is known to be very low but not exactly zero, the best fit to the experimental data was obtained by least square technique with k as a free parameter, as the other parameters are known. Finally, we compare our results with other published results and discuss the scope of application of the method we adopted.  相似文献   
449.
450.
Using the GPS ionospheric scintillation data at Hainan station (19.5°N, 109.1°E) in the eastern Asia equatorial regions and relevant ionospheric and geomagnetic data from July 2003 to June 2005, we investigate the response of L-band ionospheric scintillation activity over this region to different strong magnetic storm conditions (Dst < −100 nT) during the descending phase of the solar cycle. These strong storms and corresponding scintillations mainly took place in winter and summer seasons. When the main phase developed rapidly and reached the maximum near 20–21 LT (LT = UT + 8) after sunset, scintillations might occur in the following recovery phase. When the main phase maximum occurred shortly after midnight near 01–02 LT, following the strong scintillations in the pre-midnight main phase, scintillations might also occur in the post-midnight recovery phase. When the main phase maximum took place after 03 LT to the early morning hours no any scintillation could be observed in the latter of the night. Moreover, when the main phase maximum occurred during the daytime hours, scintillations could also hardly be observed in the following nighttime recovery phase, which might last until the end of recovery phase. Occasionally, scintillations also took place in the initial phase of the storm. During those scintillations associated with the nighttime magnetic storms, the height of F layer base (h’F) was evidently increased. However, the increase of F layer base height does not always cause the occurrence of scintillations, which indicates the complex interaction of various disturbance processes in ionosphere and thermosphere systems during the storms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号