首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7007篇
  免费   17篇
  国内免费   13篇
航空   3185篇
航天技术   2468篇
综合类   195篇
航天   1189篇
  2021年   56篇
  2019年   40篇
  2018年   153篇
  2017年   107篇
  2016年   99篇
  2015年   50篇
  2014年   174篇
  2013年   188篇
  2012年   199篇
  2011年   271篇
  2010年   180篇
  2009年   303篇
  2008年   392篇
  2007年   189篇
  2006年   167篇
  2005年   204篇
  2004年   181篇
  2003年   231篇
  2002年   234篇
  2001年   285篇
  2000年   106篇
  1999年   167篇
  1998年   190篇
  1997年   142篇
  1996年   173篇
  1995年   214篇
  1994年   187篇
  1993年   102篇
  1992年   152篇
  1991年   75篇
  1990年   60篇
  1989年   133篇
  1988年   59篇
  1987年   63篇
  1986年   63篇
  1985年   180篇
  1984年   162篇
  1983年   128篇
  1982年   155篇
  1981年   202篇
  1980年   64篇
  1979年   48篇
  1978年   50篇
  1977年   41篇
  1976年   41篇
  1975年   38篇
  1974年   47篇
  1972年   41篇
  1971年   40篇
  1970年   39篇
排序方式: 共有7037条查询结果,搜索用时 15 毫秒
351.
The propagation of Jovian electrons in interplanetary space was modelled by solving the relevant transport equation numerically through the use of stochastic differential equations. This approach allows us to calculate, for the first time, the propagation time of Jovian electrons from the Jovian magnetosphere to Earth. Using observed quiet-time increases of electron intensities at Earth, we also derive values for this quantity. Comparing the modelled and observed propagation times we can gauge the magnitude of the transport parameters sufficiently to place a limit on the 6 MeV Jovian electron flux reaching Earth. We also investigate how the modelled propagation time, and corresponding Jovian electron flux, varies with the well-known ∼13 month periodicity in the magnetic connectivity of Earth and Jupiter. The results show that the Jovian electron intensity varies by a factor of ∼10 during this cycle of magnetic connectivity.  相似文献   
352.
Zonal velocity and temperature daily global reanalysis data of 30 years are used to search seasonally steady planetary disturbances in the middle troposphere (400 hPa) and middle stratosphere (10 hPa). Significant wavenumber 1, 2 and 3 modes are found. Constant phase lines of zonal velocity 1 modes exhibit significant inclination angles with respect to the meridians. The winter hemisphere generally shows a more significant presence of structures. The Northern Hemisphere (NH) exhibits all over the year a larger amount of structures and more intense amplitudes than the Southern Hemisphere (SH). Middle latitudes exhibit the most significant cases and low latitudes the least significant ones. Longitudinally oriented land–sea transitions at ±±65° and −35° latitudes appear to play a significant role for the presence of steady planetary modes. The stratosphere exhibits a much simpler picture than the troposphere. Large scale structures with respectively NE–SW (NH) and NW–SE (SH) tilts in the observed temperature and zonal velocity constant phase lines recall the quasi-stationary Rossby wave trains that favor the poleward transport of angular momentum.  相似文献   
353.
A key aspect for understanding the astrobiological potential of planets and moons in the Solar system is the analysis of material embedded in or underneath icy layers on the surface. In particular in case of the icy crust of Jupiters moon Europa such investigation would be of greatest interest. For a Europa lander to be launched in the 2020–2030 timeframe, we propose to use a simplified instrumented melting probe which is able to access and sample depths of a few meters without the necessity of heavy and complicated drilling equipment.  相似文献   
354.
In this paper we start from the most recently observed fact that the solar wind plasma after passage over the termination shock is still supersonic with a Mach number of about 2. To explain this unexpected phenomenon and to predict the evolution of properties of the downstream plasma flow we here consider a two-fluid proton plasma with pick-up protons as a separate suprathermal, second proton fluid. We then formulate a self-consistent system of hydrodynamical conservation equations coupling the two fluids by dynamical and thermodynamical coupling terms and taking into account the effects of newly incorporated protons due to charge exchange with the H-atoms in the heliosheath. This then allows us to predict that in the most probable case the solar wind protons will become subsonic over a distance of about 30 AU downstream of the shock. As we can also show, it may, however, happen that the plasma mixture later again reconverts to a supersonic signature and has to undergo a second shock before meeting the heliopause.  相似文献   
355.
A laboratory experiment helps to understand the light scattering property of regolith like samples with known compositions and other physical parameters. The laboratory data so obtained can be compared with the existing in situ data on celestial objects like asteroids. Further, it may be analyzed with the help of various theoretical models to understand the light scattering processes from regolith more clearly. In this work we have performed laboratory based photometry of the light scattered from the surfaces of powdered alumina (Al2O3) at various tilt angles of the sample and at large phase angles, with the particles having diameter 0.3 μm. The wavelength of observation was 632.8 nm. These data have been fitted by a surface scattering model originally suggested by Hapke. Instead of using empirical Henyey–Greenstein phase function to fix the values of albedo and phase function to be used within Hapke formula, we have used Mie theory for the same. This approach helped us to determine the single particle properties such as particle diameter and complex refractive index from surface scattering phase curve alone. Mie theory depends only on the size parameter X(=2π(radius/wavelength)) and complex refractive index (nk) of the material. Since the absorption coefficient (k) for alumina is known to be very low but not exactly zero, the best fit to the experimental data was obtained by least square technique with k as a free parameter, as the other parameters are known. Finally, we compare our results with other published results and discuss the scope of application of the method we adopted.  相似文献   
356.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   
357.
A new version of global empirical model for the ionospheric propagation factor, M(3000)F2 prediction is presented. Artificial neural network (ANN) technique was employed by considering the relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. This new version is an update to the previous neural network based M(3000)F2 global model developed by Oyeyemi et al. (2007), and aims to address the inadequacy of the International Reference Ionosphere (IRI) M(3000)F2 model (the International Radio Consultative Committee (CCIR) M(3000)F2 model). The M(3000)F2 has been found to be relatively inaccurate in representing the diurnal structure of the low latitude region and the equatorial ionosphere. In particular, the existing hmF2 IRI model is unable to reproduce the sharp post-sunset drop in M(3000)F2 values, which correspond to a sharp post-sunset peak in the peak height of the F2 layer, hmF2. Data from 80 ionospheric stations globally, including a good number of stations in the low latitude region were considered for this work. M(3000)F2 hourly values from 1987 to 2008, spanning all periods of low and high solar activity were used for model development and verification process. The ability of the new model to predict the M(3000)F2 parameter especially in the low latitude and equatorial regions, which is known to be problematic for the existing IRI model is demonstrated.  相似文献   
358.
Prolonged exposure of the microscopic outer layer of the lunar surface to the space environment leads to the maturation of the surface. Maturation can be quantified and it may be expressed in terms of optical maturity (OMAT). Optical maturity estimations are very much helpful in the identification and mapping of the major minerals present on the lunar regolith. Estimation of the maturation and mineral mapping using remote sensing techniques are achieved, by coupling spectral reflectance of the lunar surface with an optimized origin. The present work estimates the optical maturity and Ferrous oxide content of the Goldschmidt and Schrodinger craters, through the recalibration of the classical method of Lucey et al. (2000a) with an origin of (0.08, 1.18) and Moon Mineralogy Mapper (M3) data. The overall recalibration results assure that the craters are highly matured.  相似文献   
359.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号