首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4466篇
  免费   13篇
  国内免费   7篇
航空   2086篇
航天技术   1604篇
综合类   16篇
航天   780篇
  2021年   44篇
  2019年   25篇
  2018年   104篇
  2017年   73篇
  2016年   76篇
  2015年   39篇
  2014年   130篇
  2013年   138篇
  2012年   143篇
  2011年   193篇
  2010年   127篇
  2009年   216篇
  2008年   293篇
  2007年   128篇
  2006年   107篇
  2005年   138篇
  2004年   117篇
  2003年   153篇
  2002年   89篇
  2001年   153篇
  2000年   74篇
  1999年   99篇
  1998年   120篇
  1997年   87篇
  1996年   90篇
  1995年   124篇
  1994年   121篇
  1993年   64篇
  1992年   95篇
  1991年   53篇
  1990年   36篇
  1989年   88篇
  1988年   40篇
  1987年   42篇
  1986年   36篇
  1985年   96篇
  1984年   86篇
  1983年   75篇
  1982年   86篇
  1981年   118篇
  1980年   41篇
  1979年   36篇
  1978年   32篇
  1977年   25篇
  1976年   28篇
  1975年   22篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1971年   21篇
排序方式: 共有4486条查询结果,搜索用时 14 毫秒
241.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   
242.
The pivotal role played by the interplanetary magnetic field (B) in modulating galactic cosmic ray (GCR) intensity in the heliosphere is described. We show that the inverse correlation observed by Forbush (1958) between GCRs and sunspot numbers (SSNs) is reflected in high correlation between SSNs and B (cc = 0.94). The SSN data are available since 1700 and the derived B data since 1835. The paleo-cosmic ray data are available for several millennia in the form of 10Be radionuclide sequestered in polar ice. The data of the ion chambers (ICs) at the Cheltenham–Fredericksburg–Yakutsk (CFY) sites are combined to create a data string for 1937–1988. In turn, these data are used to extend the measurements of the low energy GCR ions (>0.1 GeV) at balloon altitudes at high latitudes in Russia to 1937. These data are then correlated to B and the fit parameters are used to extend the low energy ion data to 1900, creating the instrumental era GCR time series for the twentieth century. The derived GCR time series is compared to 10Be measured at two sites in Greenland, namely Dye 3 and NGRIP for 1900–2000 to check the internal consistency of datasets for the long-term trend. We find that the annual mean rate (%) for 1965 at NGRIP is an outlier. We replace it with the mean of 1964 and 1965 rates and construct a new re-normalized time series at NGIP, improving the agreement with the derived instrumental era GCR time series for the twentieth century as well. This should encourage its use by heliophysics community for varied applications.  相似文献   
243.
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions.  相似文献   
244.
245.
This paper investigates the long-term perturbations of the orbits of geosynchronous space debris influenced by direct radiation pressure including the Earth’s shadowing effects. For this purpose, we propose an extension of our homemade semi-analytical theory [Valk, S., Lemaître, A., Deleflie, F. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res., submitted for publication], based on the method developed by Aksnes [Aksnes, K. Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celest. Mech. Dyn. Astron. 13, 89–104, 1976] and generalized into a more convenient non-singular formalism. The perturbations accounting for the direct radiation pressure with the Earth’s shadow are computed on a revolution-by-revolution basis, retaining the original osculating Hamiltonian disturbing function. In this framework, we compute the non-singular mean longitude at shadow entry and shadow exit at every orbital revolution in opposition to classical approaches where the singular eccentric anomalies at shadow entry and shadow exit are computed. This new algorithm is developed using non-singular variables. Consequently, it is particularly suitable for both near-circular and near-equatorial orbits as well as orbits which transit periodically around null eccentricities and null inclinations.The algorithm is tested by means of numerical integrations of the equations, averaged over the short periods, including radiation pressure, J2, the combined Moon and Sun third body attraction as well as the long-term effects of the 1:1 resonance occurring for geosynchronous objects. As an extension of [Valk, S., Lemaître, A., Anselmo, L. Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios influenced by solar radiation pressure. Adv. Space Res., doi:10.1016/j.asr.2007.10.025, 2007b], we especially apply our analysis to space debris with area-to-mass as high as 20 m2/kg. This paper provides numerical and semi-analytical investigations leading to a deep understanding of the long-term evolution of the semi-major axis. Finally, these semi-analytical investigations are compared with accurate numerical integrations of the osculating equations of motion over time scales as high as 25 years.  相似文献   
246.
We summarize the high-resolution science that has been done on high redshift galaxies with Adaptive Optics (AO) on the world’s largest ground-based facilities and with the Hubble Space Telescope (HST). These facilities complement each other. Ground-based AO provides better light gathering power and in principle better resolution than HST, giving it the edge in high spatial resolution imaging and high resolution spectroscopy. HST produces higher quality, more stable PSF’s over larger field-of-views in a much darker sky-background than ground-based AO, and yields deeper wide-field images and low-resolution spectra than the ground. Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z  6, and ground-based AO and spectroscopy has provided measurements of their masses and other physical properties with cosmic time. Last, we review how the 6.5 m James Webb Space Telescope (JWST) will measure First Light, reionization, and galaxy assembly in the near–mid-IR after 2013.  相似文献   
247.
248.
249.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   
250.
Satellite-based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. PSCs are of fundamental importance for the formation of the Antarctic ozone hole that occurs every year since the early 1980s in Southern Hemisphere spring. Despite progress in the observation, modeling and understanding of PSCs in recent years, there are still important questions which remain to be resolved, e.g. PSC microphysics, composition, formation mechanisms and long-term changes in occurrence. In addition, it has recently become clear that cirrus clouds significantly affect the global energy balance and climate, due to their influence on atmospheric thermal structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号