首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5852篇
  免费   14篇
  国内免费   13篇
航空   2615篇
航天技术   2066篇
综合类   22篇
航天   1176篇
  2021年   57篇
  2019年   31篇
  2018年   148篇
  2017年   105篇
  2016年   111篇
  2015年   53篇
  2014年   160篇
  2013年   183篇
  2012年   182篇
  2011年   255篇
  2010年   177篇
  2009年   296篇
  2008年   379篇
  2007年   180篇
  2006年   140篇
  2005年   174篇
  2004年   152篇
  2003年   202篇
  2002年   127篇
  2001年   206篇
  2000年   100篇
  1999年   120篇
  1998年   151篇
  1997年   108篇
  1996年   126篇
  1995年   161篇
  1994年   142篇
  1993年   81篇
  1992年   117篇
  1991年   60篇
  1990年   45篇
  1989年   115篇
  1988年   50篇
  1987年   56篇
  1986年   53篇
  1985年   143篇
  1984年   111篇
  1983年   90篇
  1982年   110篇
  1981年   160篇
  1980年   53篇
  1979年   41篇
  1978年   38篇
  1977年   36篇
  1976年   34篇
  1975年   35篇
  1974年   35篇
  1973年   29篇
  1972年   24篇
  1970年   24篇
排序方式: 共有5879条查询结果,搜索用时 187 毫秒
461.
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by  and  are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively.  相似文献   
462.
The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001–2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North–South, East–West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS data.  相似文献   
463.
A technique for linear interpolation of the multidimensional characteristics of a coaxial propeller fan with opposite rotation propellers is proposed; the technique makes it possible to simulate the turbofan engine operation in the entire range of flight conditions and reduce expenses for fullscale tests. The mathematical models obtained meet the requirements imposed in the semi-full-scale simulation.  相似文献   
464.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   
465.
466.
For six decades, the global network of neutron monitors (NMs) has provided a continuous stream of very valuable data to the heliophysics community, leading to many insights into the myriad modes of charged particle transport in the tangled magnetic fields that permeate the 3D heliosphere. Earlier, Ahluwalia and Ygbuhay (2012) reported on the drifts in some high latitude NM counting rates in the American zone. We continue our enquiry by testing the stability of the counting rate baselines of some NMs operating in Europe, Africa, and Asia. The data from these detectors have been extremely valuable for the short-term time variation studies, but caution is advised in using the data for long-term studies from NMs with baselines that are drifting for cause(s) unknown.  相似文献   
467.
We present a novel instrument concept to measure the energy and mass spectra of ions incident on the lunar surface, based on the E-parallel–B or Thomson-parabola device used extensively as a diagnostic in the plasma fusion community. The Apollo-era Suprathermal Ion Detector Experiment (SIDE) was the first instrument package to perform in-situ measurements of ions incident on the lunar surface. The ions can originate from a variety of sources, including the solar wind, the Earth’s magnetotail, and photoionization of the thin lunar atmosphere. The species and energy distribution of ions arriving at the lunar surface depend in a complicated and poorly-understood fashion on the phase of the lunar day, the position of the Moon with respect to the Earth, and on the local plasma environment.  相似文献   
468.
The paper presents the results of calculating nonstatitionary heat exchange between a heattransfer agent (water) and a gadolinium working element of the thermomagnetic engine with the use of ANSYS 13.0 certified software. Recommendations for designing the thermomagnetic engine working elements are given based on the analysis of calculation results.  相似文献   
469.
A novel engine health management (EHM) scheme is introduced. It uses flight-level, instead of thermodynamic, data to cost-effectively augment the onboard EHM redundancy. For a nominal healthy aircraft, fault-sensitive interrelations among flight data are globally modelled inside a flight regime via Constant-Coefficient Pooled Nonlinear AutoRegressive with eXogenous (CCP-NARX) excitation representations. Single or sequential engine faults perturb these interrelations. Statistically evaluating the perturbation-induced effects draws reliable conclusions on the engine?s health. Validation and comparisons with Kalman filter-based alternatives are made throughout the regime under various operational conditions.  相似文献   
470.
A computational viewpoint on the problems of design and numerical simulation for the nozzles of modern aircraft turbofan engines is presented. Modern concepts of noise-suppressing nozzles for civil aircraft are reviewed. Examples of application of CFD (computational fluid dynamics) methods to the analysis of nozzle flow structure and assessment of nozzle thrust characteristics are given. Errors of turbulence models in simulation of jets are analyzed. The authors’ experience in simulation of noise-suppressing nozzles for supersonic civil aircrafts is demonstrated. Insufficient accuracy of acoustic analogies for this class of tasks is shown, but a possible area of acoustic analogies application is noted. The essential elements of computational aeroacoustics (CAA) approach and numerical methods characteristic of CAA are reviewed. Numerical methodology for the simulation of nozzle acoustic performance is described in detail, including methods for simulation of near and far field of a nozzle, for generation of input perturbations and for the processing the far-field noise. Results of verification and methodical analysis of this acoustic methodology are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号