首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   0篇
航空   56篇
航天技术   55篇
航天   10篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   17篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1987年   4篇
  1985年   10篇
  1984年   4篇
  1983年   2篇
  1982年   8篇
  1981年   5篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
91.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   
92.
    
In response to the scientific interest in Jupiter's Galilean moons, NASA and ESA have plans to send orbiting missions to Europa and Ganymede, respectively. The inter-moon transfers of the Jovian system offer obvious advantages in terms of scientific return, but are also challenging to design and optimize due in part to the large, often chaotic, sensitivities associated with repeated close encounters of the planetary moons. The approach outlined in this paper confronts this shortcoming by exploiting the multi-body dynamics with a patched three-body model to enable multiple “resonant-hopping” gravity assists. Initial conditions of unstable resonant orbits are pre-computed and provide starting points for the elusive initial guess associated with the highly nonlinear optimization problem. The core of the optimization algorithm relies on a fast and robust multiple-shooting technique to provide better controllability and reduce the sensitivities associated with the close approach trajectories. The complexity of the optimization problem is also reduced with the help of the Tisserand–Poincaré (T–P) graph that provides a simple way to target trajectories in the patched three-body problem. Preliminary numerical results of inter-moon transfers in the Jovian system are presented. For example, using only 59 m/s and 158 days, a spacecraft can transfer between a close resonant orbit of Ganymede and a close resonant orbit of Europa.  相似文献   
93.
The Venus ionosphere is influenced by variations in both solar EUV flux and solar wind conditions. On the dayside the location of the topside of the ionosphere, the ionopause, is controlled by solar wind dynamic pressure. Within the dayside ionosphere, however, electron density is affected mainly by solar EUV variations, and is relatively unaffected by solar wind variations and associated magnetic fields induced within the ionosphere. The existence of a substantial nightside ionosphere of Venus is thought to be due to the rapid nightward transport of dayside ionospheric plasma across the terminator. Typical solar wind conditions do not strongly affect this transport and consequently have little direct influence on nightside ionospheric conditions, except on occasions of extremely high solar wind dynamic pressure. However, both nightside electron density and temperature are affected by the presence of magnetic field, as in the case of ionospheric holes.  相似文献   
94.
The validity of the stratospheric aerosol measurements made by the satellite sensors SAM II and SAGE has been tested by comparing their results with each other and with results obtained by other techniques (lidar, dustsonde, filter, impactor). The latter type of comparison has required the development of special techniques that (1) convert the quantity measured by the correlative sensor (e.g. particle backscatter, number, or mass) to that measured by the satellite sensor (extinction), and (2) quantitatively estimate the uncertainty in the conversion process. The results of both types of comparisons show agreement within the measurement and conversion uncertainties. Moreover, the satellite uncertainty is small compared to aerosol natural variability (caused by seasonal changes, volcanoes, sudden warmings, vortex structure, etc.). Hence, we conclude that the satellite measurements are valid.  相似文献   
95.
ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The interplanetary shock illustrates the behavior of a low Mach number shock. It had an upstream whistler wave precursor with an apparent wavelength of 180 km. The shock thickness was about 90 km for the thickness of the final field jump or 270 km for the exponential growth of the precursor wave packet. The ion inertial length was 50 km, upstream of the shock.Three examples of low or moderate , high Mach number, quasiperpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. The growth length for these waves and the shock profile was of the order of the ion inertial length.Two examples of high shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. Thus, we cannot gauge their velocity and turn the time profiles into distances. The final crossing examined shows clearly the effect of changing the orientation of the interplanetary magnetic field. Initially the upstream magnetic field made an angle of about 80° to the shock normal and the shock position remained fairly steady. Then the field rotated to 45° to the normal and the field profiles became very irregular and the shock position very unstable. Discrete wave packets appeared.Finally, we present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior we are now beginning to investigate.  相似文献   
96.
The Upgraded CARISMA Magnetometer Array in the THEMIS Era   总被引:1,自引:0,他引:1  
This review describes the infrastructure and capabilities of the expanded and upgraded Canadian Array for Realtime InvestigationS of Magnetic Activity (CARISMA) magnetometer array in the era of the THEMIS mission. Formerly operated as the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) magnetometer array until 2003, CARISMA capabilities have been extended with the deployment of additional fluxgate magnetometer stations (to a total of 28), the upgrading of the fluxgate magnetometer cadence to a standard data product of 1 sample/s (raw sampled 8 samples/s data stream available on request), and the deployment of a new network of 8 pairs of induction coils (100 samples per second). CARISMA data, GPS-timed and backed up at remote field stations, is collected using Very Small Aperture Terminal (VSAT) satellite internet in real-time providing a real-time monitor for magnetic activity on a continent-wide scale. Operating under the magnetic footprint of the THEMIS probes, data from 5 CARISMA stations at 29–30 samples/s also forms part of the formal THEMIS ground-based observatory (GBO) data-stream. In addition to technical details, in this review we also outline some of the scientific capabilities of the CARISMA array for addressing all three of the scientific objectives of the THEMIS mission, namely: 1. Onset and evolution of the macroscale substorm instability, 2. Production of storm-time MeV electrons, and 3. Control of the solar wind-magnetosphere coupling by the bow shock, magnetosheath, and magnetopause. We further discuss some of the compelling questions related to these three THEMIS mission science objectives which can be addressed with CARISMA.  相似文献   
97.
The Third Solar Wind Conference was convened from March 25 to 29,1974 at the Asilomar Conference Grounds, Pacific Grove, California. The conference consisted of nine sessions dealing with solar abundances; the history and evolution of the solar wind; the structure and dynamics of the solar wind; the structure and dynamics of the solar corona; macroscopic and microscopic properties of the solar wind; cosmic rays as a probe of the solar wind; spatial gradients; stellar winds; and interactions with objects in the solar wind. This paper summarizes the invited and contributed talks presented at the conference.Institute of Geophysics and Planetary Physics Publication Number 1354-51.  相似文献   
98.
The dual technique magnetometer system onboard the Cassini orbiter is described. This instrument consists of vector helium and fluxgate magnetometers with the capability to operate the helium device in a scalar mode. This special mode is used near the planet in order to determine with very high accuracy the interior field of the planet. The orbital mission will lead to a detailed understanding of the Saturn/Titan system including measurements of the planetary magnetosphere, and the interactions of Saturn with the solar wind, of Titan with its environments, and of the icy satellites within the magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
99.
Impulsive electric fields appearing on all four frequency channels of the Pioneer Venus electric field detector in the night ionosphere of Venus are characteristic of lightning generated signals. Based on our knowledge of the electron density and magnetic field in the Venus ionosphere, we suggest that lightning waves could be partially transmitted upwards into the ionosphere. The leakage of these lightning waves into the ionosphere on encountering electron density holes may be treated as reradiation into the ionosphere from the hole. Since this radiation pattern is frequency dependent, we should not expect to see all frequency components for every lightning stroke observed.  相似文献   
100.
    
Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for liquid water in Europa, we show that electromagnetic and seismic observations made from as few as two surface observatories comprising a magnetometer and a seismometer offer the best hope of unambiguous characterization of the three-dimensional structure of the ocean and the deeper interior of this icy moon. The observatories would also help us infer the composition of the icy crust and the ocean water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号