全文获取类型
收费全文 | 5938篇 |
免费 | 22篇 |
国内免费 | 24篇 |
专业分类
航空 | 2703篇 |
航天技术 | 2220篇 |
综合类 | 20篇 |
航天 | 1041篇 |
出版年
2021年 | 58篇 |
2019年 | 42篇 |
2018年 | 125篇 |
2017年 | 82篇 |
2016年 | 75篇 |
2015年 | 27篇 |
2014年 | 130篇 |
2013年 | 174篇 |
2012年 | 165篇 |
2011年 | 252篇 |
2010年 | 152篇 |
2009年 | 270篇 |
2008年 | 329篇 |
2007年 | 178篇 |
2006年 | 154篇 |
2005年 | 186篇 |
2004年 | 184篇 |
2003年 | 213篇 |
2002年 | 126篇 |
2001年 | 186篇 |
2000年 | 133篇 |
1999年 | 145篇 |
1998年 | 161篇 |
1997年 | 127篇 |
1996年 | 155篇 |
1995年 | 198篇 |
1994年 | 179篇 |
1993年 | 95篇 |
1992年 | 145篇 |
1991年 | 49篇 |
1990年 | 53篇 |
1989年 | 130篇 |
1988年 | 42篇 |
1987年 | 46篇 |
1986年 | 59篇 |
1985年 | 177篇 |
1984年 | 138篇 |
1983年 | 107篇 |
1982年 | 135篇 |
1981年 | 155篇 |
1980年 | 48篇 |
1979年 | 31篇 |
1978年 | 38篇 |
1977年 | 36篇 |
1976年 | 30篇 |
1975年 | 26篇 |
1974年 | 35篇 |
1973年 | 26篇 |
1970年 | 27篇 |
1966年 | 25篇 |
排序方式: 共有5984条查询结果,搜索用时 0 毫秒
721.
J. Mazur L. Friesen A. Lin D. Mabry N. Katz Y. Dotan J. George J. B. Blake M. Looper M. Redding T. P. O’Brien J. Cha A. Birkitt P. Carranza M. Lalic F. Fuentes R. Galvan M. McNab 《Space Science Reviews》2013,179(1-4):221-261
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere. 相似文献
722.
723.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献
724.
航空维修业正处在发展的十字路口.一些航空公司将其维修业务剥离出去以增加现金流,独立的航空维修企业正在进行调整以应对不断改变的市场环境,更多的维修企业则在寻求新的投资和合作伙伴. 相似文献
725.
John C. Raymond S?m Krucker Robert P. Lin Vahé Petrosian 《Space Science Reviews》2012,173(1-4):197-221
Solar flares efficiently accelerate electrons to several tens of MeV and ions to 10 GeV. The acceleration is usually thought to be associated with magnetic reconnection occurring high in the corona, though a shock produced by the Coronal Mass Ejection (CME) associated with a flare can also accelerate particles. Diagnostic information comes from emission at the acceleration site, direct observations of Solar Energetic Particles (SEPs), and emission at radio wavelengths by escaping particles, but mostly from emission from the chromosphere produced when the energetic particles bombard the footpoints magnetically connected to the acceleration region. This paper provides a review of observations that bear upon the acceleration mechanism. 相似文献
726.
David Blake David Vaniman Cherie Achilles Robert Anderson David Bish Tom Bristow Curtis Chen Steve Chipera Joy Crisp David Des?Marais Robert T. Downs Jack Farmer Sabrina Feldman Mark Fonda Marc Gailhanou Hongwei Ma Doug W. Ming Richard V. Morris Philippe Sarrazin Ed Stolper Allan Treiman Albert Yen 《Space Science Reviews》2012,170(1-4):341-399
A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity’s 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin’s angular range of 5° to 50° 2θ with <0.35° 2θ resolution is sufficient to identify and quantify virtually all minerals. CheMin’s XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co?Kα from Co?Kβ and Fe?Kα photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar? or Kapton? windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations. 相似文献
727.
Allen M.R. Katz S.L. Urkowitz H. 《IEEE transactions on aerospace and electronic systems》1989,25(5):689-700
Long-term integration is defined as integration, perhaps interrupted, over time periods long enough for targets to move through volumes in space resolvable by the radar. Because the motion of the target is unknown prior to detection, long-term integration must be performed along multiple paths representing plausible target paths. The geometry of such a set of integration paths affects detection performance in several ways. The simplest implementation of long-term integration, using constant radial velocity paths, is investigated. The effects of path geometry on detection is quantified and optimized for a target whose motion is nearly radial but otherwise unknown 相似文献
728.
We present the results of a continuous 18 hour observation of 4U1755-33 made with the European Space Agency's EXOSAT Observatory. Four 50 min dips in X-ray intensity were observed equally spaced with a period of 4.4 hrs, confirming the periodicity first suggested in White et al. (1984). The dips are spectrally independent. We examine the properties of 4U1755-33 and conclude that the source is most probably point-like and that the metallicity of the absorbing material is at least 600 times less than cosmic values. 相似文献
729.
Lee M.H. Kolodziej W.J. Mohler R.R. 《IEEE transactions on aerospace and electronic systems》1985,(5):594-600
The control of a linear system with random coefficients is studied here. The cost function is of a quadratic form and the random coefficients are assumed to be partially observable by the controller. By means of the stochastic Bellman equation, the optimal control of stochastic dynamic models with partially observable coefficients is derived. The optimal control is shown to be a linear function of the observable states and a nonlinear function of random parameters. The theory is applied to an optimal control design of an aircraft landing in wind gust. 相似文献
730.
The microwave landing system (MLS) transmits angle, data, andrange information for use by airborne receivers. In this paper, theintegrity of the data functions is analyzed in terms of the probabilityof undetected errors remaining in the data. The data format andintegrity requirements were derived from the MLS standards andguidance material defined by the International Civil Aviation Organization (ICAO). Results show that the performancerequirements can be met by: 1) averaging the received data bits ofseveral samples of the same word using a majority voting;2) reducing the bit error rate at the output of the receiver'sdecoder; and 3) a combination of the above techniques. 相似文献