首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   0篇
  国内免费   1篇
航空   81篇
航天技术   32篇
航天   70篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   9篇
  2013年   4篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   12篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   7篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1987年   3篇
  1986年   3篇
  1985年   9篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   7篇
  1967年   4篇
  1966年   3篇
  1963年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
111.
The oxidizing surface chemistry on Mars argues that any comprehensive search for organic compounds indicative of life requires methods to analyze higher oxidation states of carbon with very low limits of detection. To address this goal, microchip capillary electrophoresis (μCE) methods were developed for analysis of carboxylic acids with the Mars Organic Analyzer (MOA). Fluorescent derivatization was achieved by activation with the water soluble 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by reaction with Cascade Blue hydrazide in 30 mM borate, pH 3. A standard containing 12 carboxylic acids found in terrestrial life was successfully labeled and separated in 30 mM borate at pH 9.5, 20 °C by using the MOA CE system. Limits of detection were 5-10 nM for aliphatic monoacids, 20 nM for malic acid (diacid), and 230 nM for citric acid (triacid). Polyacid benzene derivatives containing 2, 3, 4, and 6 carboxyl groups were also analyzed. In particular, mellitic acid was successfully labeled and analyzed with a limit of detection of 300 nM (5 ppb). Analyses of carboxylic acids sampled from a lava tube cave and a hydrothermal area demonstrated the versatility and robustness of our method. This work establishes that the MOA can be used for sensitive analyses of a wide range of carboxylic acids in the search for extraterrestrial organic molecules.  相似文献   
112.
The operation of the US Landsat-7, launched in 1999, has proved a marked success. Together with the earlier Landsat data stored at the US Geological Survey Earth Data Analysis Center and other centers around the world, Landsat 7 data constitute a powerful tool for analyzing changes in the Earth's surface. However, the continuity of the Landsat system is not assured. An international system in which other countries participate could provide a more robust system, while spreading the costs and benefits of supplying such data more broadly. This paper explores the potential for creating an international arrangement to supply data of moderate resolution and extensive coverage in order to contribute to planetary stewardship, and discusses several different implementation approaches.  相似文献   
113.
Mars Science Laboratory Mission and Science Investigation   总被引:5,自引:0,他引:5  
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.  相似文献   
114.
115.
The Lunar Reconnaissance Orbiter (LRO) was implemented to facilitate scientific and engineering-driven mapping of the lunar surface at new spatial scales and with new remote sensing methods, identify safe landing sites, search for in situ resources, and measure the space radiation environment. After its successful launch on June 18, 2009, the LRO spacecraft and instruments were activated and calibrated in an eccentric polar lunar orbit until September 15, when LRO was moved to a circular polar orbit with a mean altitude of 50 km. LRO will operate for at least one year to support the goals of NASA’s Exploration Systems Mission Directorate (ESMD), and for at least two years of extended operations for additional lunar science measurements supported by NASA’s Science Mission Directorate (SMD). LRO carries six instruments with associated science and exploration investigations, and a telecommunications/radar technology demonstration. The LRO instruments are: Cosmic Ray Telescope for the Effects of Radiation (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser Altimeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC). The technology demonstration is a compact, dual-frequency, hybrid polarity synthetic aperture radar instrument (Mini-RF). LRO observations also support the Lunar Crater Observation and Sensing Satellite (LCROSS), the lunar impact mission that was co-manifested with LRO on the Atlas V (401) launch vehicle. This paper describes the LRO objectives and measurements that support exploration of the Moon and that address the science objectives outlined by the National Academy of Science’s report on the Scientific Context for Exploration of the Moon (SCEM). We also describe data accessibility by the science and exploration community.  相似文献   
116.
We review results about protoplanetary disk models, protoplanet migration and formation of giant planets with migrating cores. We first model the protoplanetary nebula as an α–accretion disk and present steady state calculations for different values of α and gas accretion rate through the disk. We then review the current theories of protoplanet migration in the context of these models, focusing on the gaseous disk–protoplanet tidal interaction. According to these theories, the migration timescale may be shorter than the planetary formation timescale. Therefore we investigate planet formation in the context of a migrating core, considering both the growth of the core and the build–up of the envelope in the course of the migration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
117.
POES Companion is a small satellite that would carry an atmospheric sounding instrument identical to one on a nearby operational polar orbiting spacecraft. The spacing between the two satellites would be controlled and variable. The mission is designed to establish the upper bound on the distance between the two satellites within which data from the instruments are statistically equivalent, and further would demonstrate that two neighboring spacecraft can be managed safely and efficiently. POES Companion will validate new Companion options outlined in this paper that could substantially reduce costs attributable to satellite-based atmospheric sounders for both operational and research programs.  相似文献   
118.
119.
It is now well established that the annual cost of natural disasters world-wide is in excess of $400 billion. Support of relief agencies and governments depends on the timely receipt of information on the scale and nature of these disasters, and much of this information comes from ground-based sources. It is also recognised, however, that significant input could be provided by space-based sensor systems, both for disaster warning as well as disaster monitoring. Recent major disasters have demonstrated that the scale of devastation cannot adequately be monitored from ground-based information sources alone. This paper addresses current developments in a study to provide a global space-based monitoring and information system, with the associated ability to provide advanced warning of many types of disaster. Also addressed are the latest developments in sensor technology (optical, IR, Radar) including a UK initiative in high resolution imaging from a microsatellite, the logistics and cost of such a system and the feasibility of using communications networks for providing the infrastructure for such a system.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号