首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   1篇
  国内免费   1篇
航空   81篇
航天技术   33篇
航天   70篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2014年   9篇
  2013年   4篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   12篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   7篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1987年   3篇
  1986年   3篇
  1985年   9篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   7篇
  1967年   4篇
  1966年   3篇
  1963年   1篇
排序方式: 共有184条查询结果,搜索用时 0 毫秒
71.
Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of ancient marine communities, they offer insights about evolutionary events during the >3 billion year time interval wherein mats co-evolved with Earth's lithosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for >1 year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators the opportunity to explore ancient environmental conditions that are rare or absent today but that might have influenced the early evolution of these photosynthetic ecosystems.  相似文献   
72.
With the maturing of space plasma research in the solar system, a more general approach to plasma physics in general, applied to cosmic plasmas, has become appropriate. There are both similarities and important differences in describing the phenomenology of space plasmas on scales from the Earth’s magnetosphere to galactic and inter-galactic scales. However, there are important aspects in common, related to the microphysics of plasma processes. This introduction to a coordinated collection of papers that address the several aspects of the microphysics of cosmic plasmas that have unifying themes sets out the scope and ambition of the broad sweep of topics covered in the volume, together with an enumeration of the detailed objectives of the coverage.  相似文献   
73.
The entropy in the hot X-ray gas in groups of galaxies is a fossil of the process of galaxy formation The amount of entropy in these low mass systems considerably exceeds that predicted from structure formation models. To explain these results requires “extra” energy which is a relic of the process of star formation and active galaxy heating. We present new XMM results on the entropy and entropy profiles. These results are inconsistent with pre-heating scenarios which have been developed to explain the entropy floor in groups but are broadly consistent with models of structure formation which include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process which controls the transformation of gas into stars and thus the formation of structure in the universe.  相似文献   
74.
The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation.  相似文献   
75.
A comprehensive goal of the Canadian Space Agency studies (CCISS, Vascular and BP Reg) has been to investigate the efficacy of current exercise countermeasures to maintain cardiovascular and cerebrovascular health on return to Earth after up to 6-months in space. Results from the CCISS experiments revealed no significant change of in-flight heart rate during daily activities or sleep, and small, but variable between astronauts, post-flight elevation. The between astronaut differences were exaggerated during measurement of spontaneous baroreflex slope, which was reduced post-flight (P<0.05) during paced breathing with 3 astronauts having significant correlations between reduced baroreflex and reduced RR-interval (consistent with reduced fitness). Cerebrovascular autoregulation and CO2 response were mildly impaired after flight. Some loss of in-flight fitness of astronauts in Vascular was reflected by the increase in HR at a work rate of 161±46 W of 12.3±10.5 bpm, 10.4±5.9 bpm and 13.4±5.7 bpm for early-flight, late-flight and R+1, respectively. On return to gravity, changes in resting heart rate for supine (5.9±3.5 bpm), sit (8.1±3.3 bpm) and stand (10.3±10.0 bpm) were small but variable between individuals (from −5 bpm to +20 bpm in post-flight standing) and not related to the change in exercise heart rate. In Vascular astronauts, pulse wave transit time measured to the finger tended to be reduced post-flight and carotid artery distensibility was significantly reduced (P=0.03, and n=6). The heart rate and baroreflex data suggest that some astronauts return with cardiovascular deconditioning in spite of the exercise regimes. However, greater arterial stiffness is common among all astronauts studied to date. The new CSA project, BP Reg, will monitor inflight blood pressure in an attempt to identify astronauts in greater need for countermeasures. Future research should focus on whether Vascular changes in astronauts might make them an appropriate model to study the mechanisms of arterial aging on Earth.  相似文献   
76.
Space systems play an important role in sustaining the development, prosperity and security of many nations. As more nations become critically reliant on space systems, questions of maintaining safety and strategic stability in outer space have come to the fore. Transparency and Confidence-Building Measures (TCBMs) for outer space activities have an important role to play in providing clarity about the intentions of States and in articulating norms of behaviour in outer space. TCBMs take several forms. They may be the elaboration of basic principles related to the exploration and use of outer space, political measures related to establishing norms of conduct, information-sharing activities to improve the transparency of outer space activities, operational practices which demonstrate a commitment to mutual cooperation in outer space, or consultative mechanisms. We present an analytical framework for evaluating potential TCBMs and illustrate the application of this framework to examples of potential operational, regulatory, treaty-based and declaratory TCBMs.  相似文献   
77.
Dextre: Improving maintenance operations on the International Space Station   总被引:1,自引:0,他引:1  
The Special Purpose Dexterous Manipulator (SPDM), known as “Dextre”, is currently slated to launch in February 2008 for deployment on the International Space Station (ISS) as the final component of Canada's Mobile Servicing System (MSS). Dextre's primary role on the Space Station is to perform repair and replacement (R&R) maintenance tasks on robotically compatible hardware such as Orbital Replaceable Units (ORUs), thereby eventually easing the burden on the ISS crew.This burden on the on-orbit crew translates practically into crew time being a limited resource on the ISS, and as such, finding ways to assist the crew in performing their tasks or offloading the crew completely when appropriate is a bonus to the ISS program. This is already accomplished very effectively by commanding as many non-critical robotics tasks as possible, such as powering up and free-space maneuvering of the Space Station Remote Manipulator System (SSRMS), known as “Canadarm2”, from the Ground.Thus, beyond its primary role, and based on an increasing clarity regarding the challenges of external maintenance on the ISS, Dextre is being considered for use in a number of ways with the objective of improving ISS operations while reducing and optimizing the use of crew time through the use of ground control for various tasks, pre-positioning hardware, acting as a temporary storage platform to break an Extra Vehicular Activity (EVA) day into manageable timelines, and extending the physical reach and range of the Canadarm2.This paper discusses the planned activities and operations for Dextre an rationale for how these will help optimize the use of crew resources on the ISS.  相似文献   
78.
With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets."  相似文献   
79.
The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.  相似文献   
80.
The Lunar Crater Observation Sensing Satellite (LCROSS), an accompanying payload to the Lunar Reconnaissance Orbiter (LRO) mission (Vondrak et al. 2010), was launched with LRO on 18 June 2009. The principle goal of the LCROSS mission was to shed light on the nature of the materials contained within permanently shadowed lunar craters. These Permanently Shadowed Regions (PSRs) are of considerable interest due to the very low temperatures, <120?K, found within the shadowed regions (Paige et al. 2010a, 2010b) and the possibility of accumulated, cold-trapped volatiles contained therein. Two previous lunar missions, Clementine and Lunar Prospector, have made measurements that indicate the possibility of water ice associated with these PSRs. LCROSS used the spent LRO Earth-lunar transfer rocket stage, an Atlas V Centaur upper stage, as a kinetic impactor, impacting a PSR on 9 October 2009 and throwing ejecta up into sunlight where it was observed. This impactor was guided to its target by a Shepherding Spacecraft (SSC) which also contained a number of instruments that observed the lunar impact. A?campaign of terrestrial ground, Earth orbital and lunar orbital assets were also coordinated to observe the impact and subsequent crater and ejecta blanket. After observing the Centaur impact, the SSC became an impactor itself. The principal measurement goals of the LCROSS mission were to establish the form and concentration of the hydrogen-bearing material observed by Lunar Prospector, characterization of regolith within a PSR (including composition and physical properties), and the characterization of the perturbation to the lunar exosphere caused by the impact itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号