首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6849篇
  免费   14篇
  国内免费   19篇
航空   3066篇
航天技术   2402篇
综合类   21篇
航天   1393篇
  2021年   73篇
  2019年   45篇
  2018年   159篇
  2017年   107篇
  2016年   112篇
  2015年   50篇
  2014年   178篇
  2013年   221篇
  2012年   212篇
  2011年   322篇
  2010年   229篇
  2009年   329篇
  2008年   366篇
  2007年   220篇
  2006年   156篇
  2005年   185篇
  2004年   182篇
  2003年   205篇
  2002年   145篇
  2001年   218篇
  2000年   127篇
  1999年   162篇
  1998年   190篇
  1997年   109篇
  1996年   171篇
  1995年   203篇
  1994年   189篇
  1993年   120篇
  1992年   149篇
  1991年   47篇
  1990年   48篇
  1989年   139篇
  1988年   59篇
  1987年   56篇
  1986年   62篇
  1985年   183篇
  1984年   144篇
  1983年   107篇
  1982年   115篇
  1981年   214篇
  1980年   49篇
  1979年   45篇
  1978年   50篇
  1977年   42篇
  1975年   50篇
  1974年   38篇
  1973年   32篇
  1972年   35篇
  1971年   35篇
  1970年   37篇
排序方式: 共有6882条查询结果,搜索用时 515 毫秒
451.
SWEA, the solar wind electron analyzers that are part of the IMPACT in situ investigation for the STEREO mission, are described. They are identical on each of the two spacecraft. Both are designed to provide detailed measurements of interplanetary electron distribution functions in the energy range 1~3000 eV and in a 120°×360° solid angle sector. This energy range covers the core or thermal solar wind plasma electrons, and the suprathermal halo electrons including the field-aligned heat flux or strahl used to diagnose the interplanetary magnetic field topology. The potential of each analyzer will be varied in order to maintain their energy resolution for spacecraft potentials comparable to the solar wind thermal electron energies. Calibrations have been performed that show the performance of the devices are in good agreement with calculations and will allow precise diagnostics of all of the interplanetary electron populations at the two STEREO spacecraft locations.  相似文献   
452.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   
453.
A new version of global empirical model for the ionospheric propagation factor, M(3000)F2 prediction is presented. Artificial neural network (ANN) technique was employed by considering the relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. This new version is an update to the previous neural network based M(3000)F2 global model developed by Oyeyemi et al. (2007), and aims to address the inadequacy of the International Reference Ionosphere (IRI) M(3000)F2 model (the International Radio Consultative Committee (CCIR) M(3000)F2 model). The M(3000)F2 has been found to be relatively inaccurate in representing the diurnal structure of the low latitude region and the equatorial ionosphere. In particular, the existing hmF2 IRI model is unable to reproduce the sharp post-sunset drop in M(3000)F2 values, which correspond to a sharp post-sunset peak in the peak height of the F2 layer, hmF2. Data from 80 ionospheric stations globally, including a good number of stations in the low latitude region were considered for this work. M(3000)F2 hourly values from 1987 to 2008, spanning all periods of low and high solar activity were used for model development and verification process. The ability of the new model to predict the M(3000)F2 parameter especially in the low latitude and equatorial regions, which is known to be problematic for the existing IRI model is demonstrated.  相似文献   
454.
We discuss the random walk of magnetic field lines in astrophysical plasmas. Based on the standard theory of field line diffusion we show that there are two asymptotic limits. In these limits field line wandering is universal because in both regimes the field line diffusion coefficient depends only on fundamental length scales and absolute magnetic field strengths. As examples we discuss the field line diffusion coefficient for different prominent turbulence models namely the slab model, the two-dimensional model, and the Goldreich–Sridhar model. We show that the field line diffusion coefficient for the latter model agrees with the results obtained for slab and two-dimensional turbulence in limiting cases. We also discuss the transport of energetic particles perpendicular with respect to the mean magnetic field. Based on the unified nonlinear transport theory we consider again asymptotic limits. It is shown that one can identify four different regimes in which the transport is again universal. In all four cases perpendicular transport only depends on fundamental length scales of turbulence, magnetic field values, and the parallel diffusion coefficient.  相似文献   
455.
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.  相似文献   
456.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
457.
The ionosphere/plasmasphere electron content (PEC) variations during strong geomagnetic storms in November 2004 were estimated by combining of mid-latitude Kharkov incoherent scatter radar observations and GPS TEC data derived from global TEC maps. The comparison between two independent measurements was performed by analysis of the height-temporal distribution for specific location corresponding to the mid-latitudes of Europe. The percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 70%) during night-time. During day-time the lesser values (30–45%) were observed for quiet geomagnetic conditions and rather high values of the PEC contribution to GPS TEC (up to 90%) were observed during strong negative storm. These changes can be explained by the competing effects of electric fields and winds, which tend to raise the layer to the region with lower loss rate and movement of the ionospheric plasma to the plasmasphere.  相似文献   
458.
The theoretical analysis of the motion of natural space debris near the stable Earth-Moon Lagrange Points, L4 and L5, is presented with a focus on the potential debris risks to spacecraft operating near these points. Specifically, the research formulates a debris propagation model using four-body dynamics, then applies candidate probabilistic survivability models to a notional spacecraft operating at the L4 and L5 Lagrange points to quantify the collision risks to the spacecraft from natural debris particles. Of the survivability models implemented, the natural debris collision risks to spacecraft survivability are found to be incredibly low, but mitigation strategies to reduce the risk further are identified in this study. Overall, research into stable Lagrange point natural debris propagation improves understanding of the collision risks posed by the naturally occurring Kordylewski clouds and enhances operational planning for Lagrange point space missions.  相似文献   
459.
Solar sails have much attracted the interest of the scientific community as an advanced low-thrust propulsion means capable of promoting the reduction of mission costs and the feasibility of missions that are not practically accessible via conventional propulsion because of their large ΔV requirements. To reduce the overall flight time, a given mission is usually analyzed in the framework of a minimum time control problem, with the employment of a continuous steering law. The aim of this paper is to investigate the performance achievable with a piecewise-constant steering law whose aim is to substantially reduce the complex task of reorienting the sail over the whole mission. Unlike previous studies based on direct approaches, here we use an indirect method to optimally select the sail angle within a set of prescribed values. The corresponding steering law translates the results available for continuous controls to the discrete case, and is able of producing trajectories that are competitive in performance with the optimum variable direction program.  相似文献   
460.
A Twin-CME Scenario for Ground Level Enhancement Events   总被引:2,自引:0,他引:2  
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号