全文获取类型
收费全文 | 6817篇 |
免费 | 11篇 |
国内免费 | 22篇 |
专业分类
航空 | 3588篇 |
航天技术 | 2192篇 |
综合类 | 190篇 |
航天 | 880篇 |
出版年
2021年 | 42篇 |
2018年 | 92篇 |
2017年 | 41篇 |
2016年 | 46篇 |
2014年 | 105篇 |
2013年 | 143篇 |
2012年 | 140篇 |
2011年 | 216篇 |
2010年 | 157篇 |
2009年 | 256篇 |
2008年 | 306篇 |
2007年 | 164篇 |
2006年 | 127篇 |
2005年 | 138篇 |
2004年 | 160篇 |
2003年 | 203篇 |
2002年 | 216篇 |
2001年 | 256篇 |
2000年 | 121篇 |
1999年 | 178篇 |
1998年 | 207篇 |
1997年 | 148篇 |
1996年 | 190篇 |
1995年 | 247篇 |
1994年 | 211篇 |
1993年 | 139篇 |
1992年 | 172篇 |
1991年 | 85篇 |
1990年 | 90篇 |
1989年 | 187篇 |
1988年 | 80篇 |
1987年 | 78篇 |
1986年 | 77篇 |
1985年 | 212篇 |
1984年 | 175篇 |
1983年 | 140篇 |
1982年 | 169篇 |
1981年 | 211篇 |
1980年 | 81篇 |
1979年 | 75篇 |
1978年 | 79篇 |
1977年 | 49篇 |
1976年 | 54篇 |
1975年 | 77篇 |
1974年 | 55篇 |
1973年 | 39篇 |
1972年 | 68篇 |
1971年 | 57篇 |
1970年 | 40篇 |
1969年 | 48篇 |
排序方式: 共有6850条查询结果,搜索用时 15 毫秒
901.
H. Kunow N. U. Crooker J. A. Linker R. Schwenn R. von Steiger 《Space Science Reviews》2006,123(1-3):1-2
902.
Bruce C. Murray 《Space Science Reviews》1973,14(3-4):474-496
Imaging is the most widely applicable single means of exploring the outer planets and their satellites and also complements other planet-oriented instruments. Imaging generally is more effectively carried out from a three-axis stabilized spacecraft than from a spinning one.Both specific experimental and broader exploratory goals must be recognized. Photography of Jupiter from terrestrial telescopes has revealed features which were neither predictable or predicted. Close-up imaging from fly-bys and orbiters affords the opportunity for discovery of atmospheric phenomena on the outer planets forever beyond the reach of terrestrial laboratories and intuition. On the other hand, a large number of specific applications of close-up imaging to study the giant planets are suggested by experience in photography from Earth and Mars orbit, and by ground-based telescopic studies of Jupiter and Saturn. Photographic observations of horizontal and vertical cloud structure at both global and finer scale, and motions and other time changes, will be essential for the study of atmospheric circulation. Size and composition of cloud particles also is a credible objective of fly-by and orbiter missions carrying both imaging and photo-polarimeter experiments.The satellites of the outer planets actually constitute three distinct classes: lunar-sized objects, asteroidal-sized objects, and particulate rings. Imaging promises to be the primary observational tool for each category with results that could impact scientific thinking in the late 70's and 80's as significantly as has close-up photography of Mars and the Moon in the last 10 yr.Finally, it should be recognized that photography occupies a unique role in the interaction between science and the popular mind. This popular, educational aspect of imaging constitutes a unique aspect of 20th Century culture. Imaging therefore is not only a primary basis for scientific discovery in the exploration of the outer planets, but an important human endeavor of enduring significance.Contribution No. 2163 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.This is one of the publications by the Science Advisory Group. 相似文献
903.
A technique for designing normalizing processors for locally non-stationary clutter is discussed. The design procedure assumes the logarithm of the clutter power varies as a polynomial with range. When the actual environment matches the design environment, the false-alarm rate is a constant that is independent of the polynomial coefficients. A measure of the relative target detection capability as a function of the number of normalization cells and the degree of the design-environment polynomial is given. The applicability of the processors to non-Rayleigh clutter is discussed. 相似文献
904.
A new type of synthetic radar, the circular synthetic radar, uses a simple interferometer whose elements are mounted at the ends of a horizontal boom rotating about a vertical mast. Pulses are radiated alternately ?in-phase? and in ?phase-quadrature.? The returning echoes are also detected incoherently, both ?in-phase? and in ?phase-quadrature.? The four distinct outputs are fed into an on-line computer which, after a Fourier analysis, synthesizes a mapping function of the azimuthal distribution of targets. 相似文献
905.
The application of existing estimation theory to the problem of specification and performance of passive sonar spectral estimators is considered. The classification function is addressed, so that the signal is assumed to be present, and so that the energy arrival angle is known. The spatial filter considered is a line array of M equally spaced omnidirectional hydrophones. Signal and ambient noise are both zero-mean, wide-sense, stationary Gaussian random processes that differ in their spatial correlation across the face of the array. The signal is a plane wave that can be made totally spacially corrected between array elements by inserting delays between sensors to invert the signal propagation delay. The noise correlation is a function of frequency, bandwidth, element separation, and the relative time delay between sensors. Under these assumptions, the Cramer-Rao lower bound is derived for the class of unbiased estimates of signal power in a narrow frequency band at the hydrophone in the presence of correlated ambient noise of known power. The bound is examined numerically, resulting in a threshold phenomenon with M that constitutes a new design consideration. In addition, there is a striking insensitivity to realistic values of ambient noise correlation, and there are ranges in signal-to-noise ratio for which one gains more by increasing M than by increasing the bandwidth-time product. Specific processors, including a new unbiased estimator when noise power is unknown, are developed. 相似文献
906.
Stark L. Tendick F. Kim W. Anderson R. Hisey M. Mills B. Matsunaga K. An Nguyen Ramos C. Tyler M. Zahalak G. Amick M. Baker B. Brown N. Brown T. Chang J. Jyh-Horng Chen Chik J. Cohen D. Cox D. Dubey J. Ellis K. Engdahl E. Frederickson C. Halamka J. Hauser R. Jacobs J. Lee C. Lee D. Liu A. Ninomiya R. Rudolph J. Schafer S. Schendel E. So G. Takeda M. Tam L. Thompson M. Wood E. Woodruff T. 《IEEE transactions on aerospace and electronic systems》1988,24(5):542-551
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA 相似文献
907.
Nearly optimum quantization levels for multileveled quantizers in radar receivers and distributed-detection are calculated for preassigned false-alarm probability Q 0 by maximizing the detection probability Q d after replacing both Q 0 and (1-Q d) by the saddlepoint approximations. Narrowband signals of random phase and with both fixed and Rayleigh-fading amplitudes in Gaussian noise are treated, and the loss in signal detectability incurred by quantization is estimated 相似文献
908.
R. H. Brown K. H. Baines G. Bellucci J.-P. Bibring B. J. Buratti F. Capaccioni P. Cerroni R. N. Clark A. Coradini D. P. Cruikshank P. Drossart V. Formisano R. Jaumann Y. Langevin D. L. Matson T. B. Mccord V. Mennella E. Miller R. M. Nelson P. D. Nicholson B. Sicardy C. Sotin 《Space Science Reviews》2004,115(1-4):111-168
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date. 相似文献
909.
Cassini Imaging Science: Instrument Characteristics And Anticipated Scientific Investigations At Saturn 总被引:1,自引:0,他引:1
Carolyn C. Porco Robert A. West Steven Squyres Alfred Mcewen Peter Thomas Carl D. Murray Anthony Delgenio Andrew P. Ingersoll Torrence V. Johnson Gerhard Neukum Joseph Veverka Luke Dones Andre Brahic Joseph A. Burns Vance Haemmerle Benjamin Knowles Douglas Dawson Thomas Roatsch Kevin Beurle William Owen 《Space Science Reviews》2004,115(1-4):363-497
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35∘ across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5∘ across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date. 相似文献
910.
Fiber optic fence sensor developments 总被引:1,自引:0,他引:1
Many detection technologies have been employed for perimeter detection, to sensitize a barrier. These outdoor perimeter fence detection sensors must reliably detect intruders attempting to cut or climb the barrier, while ignoring the effects of environmental noise, including nearby activity. In recent conference proceedings, the new IntelliFIBER/spl trade/ fiber optic based product was introduced and compared with previous technologies. IntelliFIBER is designed to provide the advantages of a nonconductive "dielectric" cable sensor, e.g., resistance to electromagnetic interference and the ability to provide longer cable zones. It utilizes the proven processor of the Intelli-FLEX/spl trade/ triboelectric cable fence sensor, which provides relay or bidirectional networked serial communications and is compatible with its calibration module. IntelliFIBER also capitalizes on the Intelli-FLEX's adaptive detection algorithms that were developed through extensive field-testing, to provide exceptional immunity to environmental alarms while still detecting the skilled intruder. 相似文献