首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6815篇
  免费   7篇
  国内免费   20篇
航空   3585篇
航天技术   2187篇
综合类   190篇
航天   880篇
  2021年   40篇
  2018年   91篇
  2017年   41篇
  2016年   44篇
  2014年   105篇
  2013年   142篇
  2012年   140篇
  2011年   216篇
  2010年   157篇
  2009年   256篇
  2008年   306篇
  2007年   164篇
  2006年   127篇
  2005年   138篇
  2004年   160篇
  2003年   203篇
  2002年   216篇
  2001年   256篇
  2000年   121篇
  1999年   178篇
  1998年   207篇
  1997年   148篇
  1996年   190篇
  1995年   247篇
  1994年   211篇
  1993年   139篇
  1992年   172篇
  1991年   85篇
  1990年   90篇
  1989年   187篇
  1988年   79篇
  1987年   78篇
  1986年   77篇
  1985年   212篇
  1984年   175篇
  1983年   140篇
  1982年   169篇
  1981年   211篇
  1980年   81篇
  1979年   75篇
  1978年   79篇
  1977年   49篇
  1976年   54篇
  1975年   77篇
  1974年   55篇
  1973年   39篇
  1972年   68篇
  1971年   57篇
  1970年   40篇
  1969年   48篇
排序方式: 共有6842条查询结果,搜索用时 503 毫秒
801.
In July and October 1995, a large-scale airborne SAR experiment was conducted in the Yuma Proving Ground, Yuma, Arizona, to investigate ground penetration radar phenomenology and buried target detection. This paper describes the Yuma experiment and measurement results for many tactical, utility, and environmental targets deployed in the test  相似文献   
802.
A new structure for the separation and tracking of uncorrelated sources through the use of a 2-dimensional adaptive array is proposed and investigated. The structure consists of a matrix preprocessing beamformer designed to result in outputs which are due to individual sources in the steady state. The preprocessing weights of the beamformer are calculated using the estimated locations of the sources and are updated periodically. Continuous estimation of the source locations is accomplished by using the beamformer outputs to adaptively eliminate correlated components in a reference element of the array while the structure proposed may have rather erratic initial convergence behavior, it has the advantages of being simple to be implemented, fast in tracking, and well suited for applications in mobile communication systems for increasing system capacity  相似文献   
803.
804.
805.
806.
807.
808.
Coherent signal detection in non-Gaussian interference is presently of interest in adaptive array applications. Conventional array detection algorithms inherently model the interference with a multivariate Gaussian random vector. However, non-Gaussian interference models are also under investigation for applications where the Gaussian assumption may not be appropriate. We analyze the performance of an adaptive array receiver for signal detection in interference modeled with a non-Gaussian distribution referred to as a spherically invariant random vector (SIRV). We first motivate this interference model with results from radar clutter measurements collected in the Mountain Top Program. Then we develop analytical expressions for the probability of false alarm and the probability of detection for the adaptive array receiver. Our analysis shows that the receiver has constant false alarm rate (CFAR) performance with respect to all the interference parameters. Some illustrative examples are included that compare the detection performance of this CFAR receiver with a receiver that has prior knowledge of the interference parameters  相似文献   
809.
By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the large-scale quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
810.
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号