首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   40篇
  国内免费   26篇
航空   330篇
航天技术   83篇
综合类   78篇
航天   250篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   11篇
  2020年   18篇
  2019年   13篇
  2018年   12篇
  2017年   9篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   10篇
  2012年   26篇
  2011年   30篇
  2010年   19篇
  2009年   10篇
  2008年   20篇
  2007年   30篇
  2006年   26篇
  2005年   27篇
  2004年   10篇
  2003年   20篇
  2002年   14篇
  2001年   24篇
  2000年   12篇
  1999年   10篇
  1998年   12篇
  1997年   18篇
  1996年   15篇
  1995年   24篇
  1994年   53篇
  1993年   6篇
  1992年   6篇
  1991年   11篇
  1990年   11篇
  1989年   9篇
  1988年   23篇
  1987年   13篇
  1986年   5篇
  1985年   31篇
  1984年   26篇
  1983年   29篇
  1982年   31篇
  1981年   12篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有741条查询结果,搜索用时 15 毫秒
131.
具有无源控制空腔时正激波/湍流附面层干扰的数值模拟   总被引:3,自引:0,他引:3  
采用雷诺平均N-S方程和B/L代数湍流模型计算了具有无源控制空腔时正激波/湍流附面层干扰流场。计算与实验结果的比较表明,本文方法可较准确地预测激波结构、激波与附面层干扰区流动基本特征及波后流动分离状态、激波位置、波前马赫数等参数。   相似文献   
132.
The present investigation uncovers various pieces of evidence for the possible biologically induced mineralization in iron mats associated with a pH-neutral spring in the Borra caves, Vishakhapatnam, India. Electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] demonstrated large numbers of (i) hollow tubes (diameter ~1?μm) resembling sheaths of the iron-oxidizing bacteria Leptothrix, (ii) thin (diameter <1?μm) solid fibers of uncertain origin, (iii) nanoscale subspherical to irregularly shaped particles encrusting tubes and fibers, and (iv) aggregates of broken and partially disintegrated sheaths, fibers, and particles embedded in extracellular polymeric substances (EPS) occasionally including microbial cells. X-ray microanalyses by energy dispersive spectroscopy (EDS) revealed that the mat accumulated largely Fe but also smaller amounts of Si and traces of P and Ca. Particles rich in Si and Al (possibly kaolinite) and Ca (carbonate) were also observed. High-resolution TEM/EDS of unstained ultrathin sections suggests that microbial sheaths were highly mineralized by amorphous to cryptocrystalline Fe-rich phases and less frequently by other fine-grained and fibrous authigenic claylike minerals. Total number of microorganisms in the iron mats was 5.8×10(5) cells, g sed(-1) (wet weight). Analysis of the 16S rRNA gene diversity revealed microorganisms assigned to eight different phyla [Proteobacteria (62%), Chloroflexi (8%), Bacteroidetes (7%), Planctomycetes (1%), Actinobacteria (5%), Acidobacteria (6%), Nitrospira (1%), Firmicutes (5%)]. Within the Proteobacteria, Betaproteobacteria was the predominant class, which accounted for 28% of the sequences. Within this class some obvious similarities between the obtained sequences and sequences from other cave systems could be seen, especially sequences affiliated with Leptothrix, Siderooxidans, Crenothrix, Comamonadaceae, Dechloromonas, and many uncultured Betaproteobacteria. Four (4%) of the sequences could not be assigned to phylum level but were affiliating with the candidate division TM7 (2%), candidate division OP11 (1%), and candidate division WWE3 (1%). The results allow us to infer a possible relationship of microbial sheaths, EPS, and the iron precipitates to microbial community diversity in the Borra cave springs. Understanding biogenic iron oxides in caves has important astrobiological applications as it provides a potential tool for the detection of extraterrestrial life.  相似文献   
133.
The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.  相似文献   
134.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   
135.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   
136.
应用密度泛函理论(DFT)的B3LYP方法,在6-31G(d)和6-31++G(d)基组水平上对HMX炸药进行了研究,计算得到了中性分子和离子的稳定构型,并确定了分子的电离能。通过对HMX红外振动光谱的理论计算和研究,发现振动光谱主要分布在I(0~1 750 cm-1)和II(3 000~3 250 cm-1)两个区域,且整个红外光谱中振动峰的实际数目远小于简正振动的数目。此外,与中性分子的红外光谱相比,HMX+的谱线强度整体要大于HMX分子的谱线强度,且最强峰和次强峰与中性分子相比出现了明显的红移。  相似文献   
137.
为了研究旋翼直径变化对直升机性能的提升作用,将旋翼动力学综合模型与机身模型相耦合,采用前飞配平方法计算稳态时旋翼操纵量和机身姿态角,从而计算直升机需用功率。通过研究直升机功率与旋翼半径、前飞速度、直升机起飞重量以及飞行高度之间的关系来确定直升机需用功率的降低幅度,同时也分析了旋翼桨距和机体倾斜角随旋翼半径和前飞速度的变化趋势。在中高速飞行时,特别是高速飞行时,旋翼半径的变化可以显著地提升直升机的性能。当飞行速度为200km/h、旋翼半径减小20%,需用功率可降低37.6%。随着飞行高度的不断增加,在低速到中速飞行时直升机功率减小幅度会减小,在高速时功率减小幅度会增大。旋翼总距和纵横向周期变距随旋翼半径减少而增加,机体纵横向倾斜角随半径减小而减小。  相似文献   
138.
The chilled rinds of pillow basalt from the Ampère-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (~2.5 μm in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 μm in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.  相似文献   
139.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
140.
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号