首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17103篇
  免费   28篇
  国内免费   123篇
航空   9723篇
航天技术   4900篇
综合类   235篇
航天   2396篇
  2021年   154篇
  2018年   165篇
  2016年   149篇
  2014年   432篇
  2013年   513篇
  2012年   398篇
  2011年   547篇
  2010年   385篇
  2009年   742篇
  2008年   772篇
  2007年   341篇
  2006年   415篇
  2005年   346篇
  2004年   396篇
  2003年   462篇
  2002年   451篇
  2001年   507篇
  2000年   337篇
  1999年   434篇
  1998年   375篇
  1997年   294篇
  1996年   331篇
  1995年   406篇
  1994年   351篇
  1993年   349篇
  1992年   264篇
  1991年   246篇
  1990年   231篇
  1989年   360篇
  1988年   198篇
  1987年   229篇
  1986年   222篇
  1985年   636篇
  1984年   507篇
  1983年   391篇
  1982年   485篇
  1981年   605篇
  1980年   243篇
  1979年   182篇
  1978年   189篇
  1977年   144篇
  1976年   155篇
  1975年   181篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
The period of field line resonance (FLR) type geomagnetic pulsations depends on the length of the field line and on the plasma density in the inner magnetosphere (plasmasphere), where field lines are closed. Here as FLR period, the period belonging to the maximum occurrence frequency of the occurrence frequency spectrum (equivalent resonance curve) of pulsations has been considered. The resonance system may be replaced by an equivalent resonant circuit. The plasma density would correspond to the ohmic load. The plasma in the plasmasphere originates from the ionosphere, thus FLR period, occurrence frequency are also affected by the maximum electron density in the ionosphere. The FLR period has shown an enhancement with increasing F region electron density, while the occurrence frequency indicated diminishing trend (possible damping effect). Thus, the increased plasma density may be the cause of the decreased occurrence of FLR type pulsations in the winter months of solar activity maximum years (winter anomaly).  相似文献   
922.
In this paper we start from the most recently observed fact that the solar wind plasma after passage over the termination shock is still supersonic with a Mach number of about 2. To explain this unexpected phenomenon and to predict the evolution of properties of the downstream plasma flow we here consider a two-fluid proton plasma with pick-up protons as a separate suprathermal, second proton fluid. We then formulate a self-consistent system of hydrodynamical conservation equations coupling the two fluids by dynamical and thermodynamical coupling terms and taking into account the effects of newly incorporated protons due to charge exchange with the H-atoms in the heliosheath. This then allows us to predict that in the most probable case the solar wind protons will become subsonic over a distance of about 30 AU downstream of the shock. As we can also show, it may, however, happen that the plasma mixture later again reconverts to a supersonic signature and has to undergo a second shock before meeting the heliopause.  相似文献   
923.
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined.  相似文献   
924.
Hard X-ray emitting symbiotic stars are candidates for SN Ia progenitors. The importance of Type Ia SNe as standard candles for cosmology makes the study of their progenitor systems particularly important. Additionally, they provide one of the most promising laboratories for the study of astrophysical jets. Typically, the X-ray emission in these systems is modeled with a collisional plasma model, sometimes with an emission measure distribution taken from a cooling flow model. The lack of any coherent periods in both X-rays and optical wave band strongly suggests that the accreting white dwarfs in the hard X-ray symbiotic stars are non-magnetic. Although relatively few have been discovered to date, but we believe that there are very many of them in our galaxy and could be possible candidates for the Galactic Ridge X-ray Emissions (GRXE).  相似文献   
925.
A study of the evolution of the periodic and the quasi-periodic orbits near the Lagrangian point L2, which is located to the right of the smaller primary on the line joining the primaries and whose distance from the more massive primary is greater than the distance between the primaries, in the framework of restricted three-body problem for the Sun–Jupiter, Earth–Moon (relatively large mass ratio) and Saturn–Titan (relatively small mass ratio) systems is made. Two families of periodic orbits around the smaller primary are identified using the Poincaré surface of section method – family I (initially elliptical, gradually becomes egg-shaped with the increase in the Jacobi constant C and elongated towards the more massive primary) and family II (initially egg-shaped orbits elongated towards L2 and gradually becomes elliptical with the increase in C). The family I in the Sun–Jupiter and Saturn–Titan systems contains two separatrix caused by third-order and fourth-order resonances, while the Earth–Moon system has only one separatrix which is caused by third-order resonances. Also in the Sun–Jupiter and the Saturn–Titan systems, family I merge with family II, around Jacobian constant 3.0393 and 3.0163, respectively, while in the Earth–Moon system, family II evolves separately from two different branches. The two branches merge at C = 3.184515. In the Earth–Moon system, the family II contains a separatrix due to third-order resonances which is absent in the other two systems.  相似文献   
926.
By using a Doppler Weather Radar (DWR) at Shriharikota (13.66°N & 80.23°E), an Artificial Neural Network (ANN) based technique is proposed to improve the accuracy of rain intensity estimation. Three spectral moments of a Doppler spectra are utilized as an input data to an ANN. Rain intensity, as measured by the tipping bucket rain gauges around the DWR station, are considered as a target values for the given inputs. Rain intensity as estimated by the developed ANN model is validated by the rain gauges measurements. With the help of a developed technique, reasonable improvement in the estimation of rain intensity is observed. By using the developed technique, root mean square error and bias are reduced in the range of 34–18% and 17–3% respectively, compared to ZR approach.  相似文献   
927.
Several recent results important for production of ion pairs in the Earth atmosphere by various primary cosmic ray nuclei are presented. The direct ionization by various primary cosmic ray nuclei is explicitly obtained. The longitudinal profile of atmospheric cascades is sensitive to the energy and mass (charge) of the primary particle. In this study different cosmic ray nuclei are considered as primaries, namely Helium, Oxygen and Iron nuclei. The cosmic ray induced ionization is obtained on the basis of CORSIKA 6.52 code simulations using FLUKA 2006 and QGSJET II hadronic interaction models. The energy of the primary particles is normalized to GeV per nucleon. In addition, the ionization yield function Y is normalized as ion pair production per nucleon. The obtained ionization yield functions Y for various primaries are compared. The presented results and their application are discussed.  相似文献   
928.
The GOES Precipitation Index (GPI) technique (Arkin, 1979) for rainfall estimation has been in operation for the last three decades. However, its applications are limited to the larger temporal and spatial scales. The present study focuses on the augmentation on GPI technique by incorporating a moisture factor for the environmental correction developed by Vicente et al. (1998). It consists of two steps; in the first step the GPI technique is applied to the Kalpana-IR data for rainfall estimation over the Indian land and oceanic region and in the second step an environmental moisture correction factor is applied to the GPI-based rainfall to estimate the final rainfall. Detailed validation with rain gauges and comparison with Tropical Rainfall Measuring Mission (TRMM) merged data product (3B42) are performed and it is found that the present technique is able to estimate the rainfall with better accuracy than the GPI technique over higher temporal and spatial domains for many operational applications in and around the Indian regions using Indian geostationary satellite data. Further comparison with the Doppler Weather Radar shows that the present technique is able to retrieve the rainfall with reasonably good accuracy.  相似文献   
929.
The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland’s nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.  相似文献   
930.
The Clouds and Earth Radiant Energy System (CERES) project’s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号