首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   0篇
  国内免费   3篇
航空   150篇
航天技术   51篇
综合类   2篇
航天   47篇
  2022年   1篇
  2021年   5篇
  2019年   3篇
  2018年   33篇
  2017年   18篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   11篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   14篇
  2008年   7篇
  2007年   14篇
  2006年   4篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1986年   2篇
  1985年   10篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   10篇
  1978年   1篇
  1970年   1篇
  1967年   1篇
  1963年   1篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
71.
Our knowledge of the primordial matter from the objects of the outer solar system has made a considerable progress over the past years, in spite of the lack of any in situ measurements of these objects at the present time. The recent progress of ground-based instrumentation and the launch of the two Voyager fly-by missions have provided a huge amount of new informations about the origin and the evolution of the primitive Solar System objects.The most significant discoveries concerning the atmospheres of the Giant Planets can be summarized as follows: (1) there does not seem to be any differentiation in the internal structure of Jupiter during the planet's history; thus, the H2/He ratio measured on Jupiter seems to be representative of the H/He ratio of the Primordial Nebula; (2) there is some evidence for a helium differentiation, relative to hydrogen, in Saturn's interior; (3) there seems to be a carbon enrichment on both Jupiter and Saturn by a factor about 2; this result is consistent with a model in which the planetary core is formed first, and the atmosphere accreted by this core in a second stage; (4) the D/H ratio measured on Jupiter should be representative of the D/H value in the Primordial Nebula, 4.5 billion years ago; this value is 2 to 5 times larger than the mean value measured in the local interstellar medium now; (5) Titan's atmosphere is dominated by nitrogen and contains traces of organic and prebiotic molecules (HCN, C2N2, HC3N); the chemical composition of Titan's atmosphere could be favorable for the early stages of life development.The small bodies of the Solar System — asteroïds and comets — are still very poorly known. However they contain a key information about the physical and chemical properties of dust in the Primordial Nebula and the interstellar medium. With the launch of expected fly-by missions towards Comet Halley and, possibly, towards asteroïds, we may hope to know a new development of our understanding of these objects, comparable to the progress we have known on the Giant Planets over the past ten years.  相似文献   
72.
L-grooves are the consequence of layered structure of Phobos, which are made up of parallel layers of different composition or hardness.  相似文献   
73.
Dissipation of magnetospheric energy leads to an upper atmospheric disturbance zone whose extent varies with local time. A statistical analysis of ESRO 4 data reveals that (1) in the afternoon/evening sector the boundary location is determined by the region of electric current dissipation along the auroral oval; (2) in the midnight/early morning sector dynamical effects extend the disturbance zone to lower latitudes; and (3) in the late morning sector direct heating effects are superimposed on the residuals of the early morning disturbance.  相似文献   
74.
Transition between high altitude manned observatories and unmanned balloon-borne or rocket-borne experiments is achieved with high flying aircrafts, at altitudes above tropopause (>12 km), which became readily available, at reasonable cost and reliability, in the past five or ten years.This paper reviews the development of scientific uses of aircrafts, especially for astronomy and geophysics, with some emphasis placed on infrared problems, closely related to the scale height of the chief infrared absorber, i.e. telluric water vapor.Absorbers distribution vs altitude and spectral characteristics are summarized (Figures 1, 2, 3).Capabilities of various available aircrafts are compared (Table I) and the various ways to consider modifications are discussed: structural modifications or design problems to fit telescopes or light collectors on board. Tables II and III list the advantages of airborne observations, compared to other spatial carriers, and also the specific problems connected with aircrafts. Adopted solutions to these problems are exposed (Figures 4, 5, 6, 7) and costs are briefly discussed.Finally, a few examples of scientific results, gathered in the few past years from aircraft, are given, both in astronomy and in geophysics.  相似文献   
75.
76.
Cometary Dust     
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth’s orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.  相似文献   
77.
The ionospheric scintillation, generated by the ionospheric plasma irregularities, affects the radio signals that pass through it. Their effects are widely studied in the literature with two different approaches. The first one deals with the use of radio signals to study and understand the morphology of this phenomenon, while the second one seeks to understand and model how much this phenomenon interferes in the radio signals and consequently in the services to which these systems work. The interest of several areas, particularly to those that are life critical, has increased using the concept of satellite multi-constellation, which consists of receiving, processing and using data from different navigation and positioning systems. Although there is a vast literature analyzing the effects of ionospheric scintillation on satellite navigation systems, the number of studies using signals received from the Russian satellite positioning system (named GLONASS) is still very rare. This work presents for the first time in the Brazilian low-latitude sector a statistical analysis of ionospheric scintillation data for all levels of magnetic activities obtained by a set of scintillation monitors that receive signals from the GLONASS system. In this study, data collected from four stations were used in the analysis; Fortaleza, Presidente Prudente, São José dos Campos and Porto Alegre. The GLONASS L-band signals were analyzed for the period from December 21, 2012 to June 20, 2016, which includes the peak of the solar cycle 24 that occurred in 2014. The main characteristics of scintillation presented in this study include: (1) the statistical evaluation of seasonal and solar activity, showing the chances that an user on similar geophysical conditions may be susceptible to the effects of ionospheric scintillation; (2) a temporal analysis based on the local time distribution of scintillation at different seasons and intensity levels; and (3) the evaluation of number of simultaneously affected channels and its effects on the dilution of precision (DOP) for GNSS users are also presented in order to alert the timetables in which navigation will be most susceptible to such effects, as well as statistics on simultaneously affected channels. Relevant results about these statistical characteristics of scintillation are presented and analyzed providing relevant information about availability of a navigation system.  相似文献   
78.
79.
The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2?ppb (ng?mL?1) for biomolecules and 10? to 103 spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50?mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants.  相似文献   
80.
In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号