The maximum inclination of the heliospheric current sheet (the tilt angle) and the magnitude B of the heliospheric magnetic field are often used to characterize cosmic ray (CR) modulation. The relevance of B is likely to be the coupling of the interplanetary diffusion coefficients K to the field magnitude in a relation K∝B−n. In this paper we study the coupled influence of tilt angle and magnetic field variations on the modulation of cosmic rays
at neutron monitor energies for the 1974 mini-cycle and for the onsets of solar cycles 21, 22, and 23. It is suggested that
for A>0 polarity epochs, the sensitivity of the CR response to variations in B is partly controlled by the size of the tilt angle, α. The onsets of cycles 21 and 23 exhibit differences, related to phase
differences in these parameters. A simple model is used to predict the CR response to variations in B.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
The Lunar Radar Sounder (LRS) onboard the KAGUYA (SELENE) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 2363 hours worth of radar sounder data and 8961 hours worth of natural radio and plasma wave data have been obtained. It was revealed through radar sounder observations that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Radar sounder data were obtained not only in the nearside maria but also in other regions such as the farside highland region and polar region. LRS also performed passive observations of natural plasma waves associated with interaction processes between the solar wind plasma and the moon, and the natural waves from the Earth, the sun, and Jupiter. Natural radio waves such as auroral kilometric radiation (AKR) with interference patterns caused by the lunar surface reflections, and Jovian hectometric (HOM) emissions were detected. Intense electrostatic plasma waves around 20 kHz were almost always observed at local electron plasma frequency in the solar wind, and the electron density profile, including the lunar wake boundary, was derived along the spacecraft trajectory. Broadband noises below several kHz were frequently observed in the dayside and wake boundary of the moon and it was found that a portion of them consist of bipolar pulses. The datasets obtained by LRS will make contributions for studies on the lunar geology and physical processes of natural radio and plasma wave generation and propagation. 相似文献
An algorithm has been developed that retrieves water vapour profiles in the upper troposphere and lower stratosphere from optical depth spectra obtained by the Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument onboard the SCISAT satellite as part of the Atmospheric Chemistry Experiment (ACE) mission. The retrieval relies on ro-vibrational absorption of solar radiation by water vapour in the 926–970 nm range. During the iterative inversion process, the optical depth spectra are simulated at the spectral resolution and sampling frequency of MAESTRO using the correlated-k approximation. The Chahine inversion updates the water vapour volume mixing ratio (VMR), adjusting all retrieval layers simultaneously, to match the observed differential optical depth due to absorption by water vapour and ozone at each tangent height. This approach accounts for significant line saturation effects. Profiles are typically obtained from ∼22 km down to the cloud tops or to 5 km, with relative precision as small as 3% in the troposphere. In the lower stratosphere, the precision on water vapour VMR is ∼1.3 μmol/mol in an individual retrieval layer (∼1 km thick). The spectral capability of MAESTRO allows for the clear separation of extinction due to water vapour and aerosol, and for the fitting quality to be quantified and used to determine an altitude-dependent convergence criterion for the retrieval. In the middle troposphere, interhemispheric differences in water vapour VMR are driven by oceanic evaporation whereas in the upper troposphere, deep convection dominates and a strong seasonal cycle is observed at high latitudes. 相似文献
This chapter will review what is known about the charging of planetary rings, in particular the sum of the individual currents from the time-varying charge dQ/dt, of the planetary ring particle. For the smallest ring particles, in addition to checking the plasma conditions for the charging currents, one must consider if collective effects in the ring environment are relevant. Two planetary ring environments that have held a strong interest for ring scientists in the last two decades are Saturn’s spokes in the B Ring and the environment of Saturn’s E ring. Two sections of this chapter will describe these planetary ring charging environments in detail. Finally, we describe two charging effects that demonstrate areas of future studies while providing fresh examples of the intriguing effects from planetary ring charging processes. 相似文献
Space and time alignments are the prerequisites for the successful fusion of multiple sensors. A space-time registration model is proposed to estimate the system biases and to perform time synchronization together for mobile radar and electronic support measure (ESM) systems. A space-time registration model for radar and ESM is first developed, and an unscented Kalman filter (UKF) is proposed to estimate the space-time biases and target states simultaneously. The posterior Cramer-Rao bounds (PCRBs) are derived for the proposed UKF registration algorithm for ESM detection probability less than or equal to one. Theoretical analyses are performed to evaluate the accuracy and robustness of the proposed method. Computer simulations show that the UKF registration algorithm is indeed effective and robust for different radar and ESM tracking scenarios. 相似文献
The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth. 相似文献
Recent papers have suggested that the slow solar wind is a super-position of material which is released by reconnection from
large coronal loops. This reconnection process is driven by large-scale motions of solar magnetic flux driven by the non-radial
expansion of the solar wind from the differentially rotating photosphere into more rigidly rotating coronal holes.
The elemental composition of the slow solar wind material is observed to be fractionated and more variable than the fast solar
wind from coronal holes. Recently, it has also been reported that fractionation also occurs in 3He/4He. This may be interpreted
in the frame-work of an existing model for fractionation on large coronal loops in which wave-particle interactions preferentially
heat ions thereby modifying their scale-heights.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
The Rosetta observations have greatly advanced our knowledge of the cometary nucleus and its immediate environment. However, constraints on the mission (both planned and unplanned), the only partially successful Philae lander, and other instrumental issues have inevitably resulted in open questions. Surprising results from the many successful Rosetta observations have also opened new questions, unimagined when Rosetta was first planned. We discuss these and introduce several mission concepts that might address these issues. It is apparent that a sample return mission as originally conceived in the 1980s during the genesis of Rosetta would provide many answers but it is arguable whether it is technically feasible even with today’s technology and knowledge. Less ambitious mission concepts are described to address the suggested main outstanding scientific goals.
We report a Nobeyama Radioheliograph (NoRH) microwave observation of a propagating feature of non thermal emission in a solar flare. The flare had a very extended source well resolved by NoRH. In the rising phase of the microwave burst, a non-thermal gyrosynchrotron source was observed by the high-rate (10 images per second) observations to propagate from one end of the loop to the other with a speed of 9 × 104 km s−1. We interpret this non-thermal propagating source is emitted from streaming electrons. 相似文献