首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
航空   16篇
航天技术   7篇
综合类   2篇
航天   33篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
21.
A compact Dopplergraph/magnetograph placed in a continuous solar-viewing orbit will allow us to make major advancements in our understanding of solar internal structure and dynamics. An international program is currently being conducted at JPL and Mt. Wilson to develop such an instrument. By combining a unique magneto-optical resonance filter with CID and CCD cameras we have been able to obtain full- and partial-disk Dopplergrams and magnetograms. Time series of the velocity images are converted into k-ω power spectra which show clear- the solar nonradial p-mode oscillations. Magnetograms suitable for studying the long-term evolution of solar active regions have also been obtained with this instrument. A flight instrument based on this concept is being studied for possible inclusion in the SOHO mission.  相似文献   
22.
23.
24.
In this paper we summarise the current understanding of Martian condensate and dust clouds. The paper is particularly concerned with the spatial, temporal and seasonal characteristics of the clouds. The condensate clouds are composed of water and ice particles and occasionally CO2 particles. Dust clouds are composed of material from the surface and redistributed over the planet through the weather systems. The apparent lack of annual reproductivity of these dust storms forms a major unresolved problem. We discuss in this paper the types of observations needed in future space missions, in particular the requirements for the NASA Mars Geochemical Climatology Orbiter Mission planned for the end of this decade.  相似文献   
25.
The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chrétien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.  相似文献   
26.
InSight Mars Lander Robotics Instrument Deployment System   总被引:1,自引:0,他引:1  
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity.  相似文献   
27.
The purpose of this article is to summarize a computational approach, which developed and matured over an extended period of time, and has been shown to be useful for performing large-eddy simulation (LES) of flows with active control. Because of the nature of active flow control, simulation of this class of problems typically cannot be carried out accurately by methods less sophisticated than LES. Active control flowfields are highly unsteady, and can be characterized by small-scale fluid structures which are produced by the control process, but may also be inherent in the original uncontrolled situation. The numerical scheme is predicated upon an implicit time-marching algorithm, and utilizes a high-order compact finite-difference approximation to represent spatial derivatives. Robustness of the scheme is maintained by employing a low-pass Pade-type nondispersive spatial filter, which also accounts for the fine-scale turbulent dissipation that otherwise is traditionally provided by an explicitly added subgrid-scale (SGS) stress model. Geometrically complex applications are accommodated by an overset grid technique, where spatial accuracy is preserved through use of high-order interpolation. Utility of the method is illustrated by specific computational examples, including suppression of acoustic resonance in supersonic cavity flow, leading-edge vortex control of a delta wing, efficiency enhancement of a transitional highly loaded low-pressure turbine blade, and separation control of a wall-mounted hump model. Control techniques represented in these examples are comprised of both steady and pulsed mass injection or removal, as well as plasma-based actuation. For each case, features of the flowfield are elucidated and the solutions are compared to the baseline situation where no control was enforced. Where available, comparisons are also made with experimental data.  相似文献   
28.
There have been many significant advances in understanding magnetic field reconnection as a result of improved space measurements and two-dimensional computer simulations. While reviews of recent work have tended to focus on symmetric reconnection on ion and larger spatial scales, the present review will focus on asymmetric reconnection and on electron scale physics involving the reconnection site, parallel electric fields, and electron acceleration.  相似文献   
29.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号