首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
航空   36篇
航天技术   13篇
航天   18篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2014年   4篇
  2012年   1篇
  2011年   2篇
  2009年   6篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
11.
Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The project had two major objectives: 1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration; and 2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in project planning, it was determined that the development of the Prometheus nuclear-powered spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This describes the key experiences in managing Prometheus, which should prove useful for future projects of similar scope and magnitude.  相似文献   
12.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
13.
During the last decade a large number of radars (~12) have been developed, which have produced substantial quantities of tidally-corrected mean winds data. The distribution of the radars is not global, but many areas are well covered: the Americas with Poker Flat (65°N), Saskatoon (52°N), Durham (43°N), Atlanta (34°N), Puerto Rico (18°N); Europe with Kiruna (68°), Garchy (47°N) and Monpazier (44°N); and Oceania with Christchurch (44°S), Adelaide (35°S), Townsville (20°S), and Kyoto (35°N). Zonal and meridional wind height-time cross-sections from 6080 km (MF/Meteor Radar) to ~110 km have been prepared for the last 5–6 years. They are compared with cross-sections from CIRA-72 for zonal winds, and Groves (1969) for meridional winds.It is shown that while CIRA-72 is still a useful model for many purposes, significant differences exist between it and the new radar data. The latter demonstrate important seasonal, latitudinal, longitudinal and hemispheric variations. The new meridional cross-sections are of great value. The common features with Groves (1969) are the equatorward cells in summer near 85 km; however their strength (~10 ms?1) and size are less. Systematic and somewhat different variations emerge at higher (?52°N) and middle (35–44°) latitudes.  相似文献   
14.
15.
Phillip Clark   《Space Policy》1999,15(3):141
On 4 September 1998 North Korea announced that it had launched its first satellite on 31 August. Whilst the North Koreans maintained that they had a satellite in orbit, nothing was tracked in the West. This paper presents a review of what the North Koreans announced concerning the satellite launch and the various statements and claims which were made by both the Russians and the USA before the question of the launch being successful or unsuccessful was finally resolved.  相似文献   
16.
Development of components for bioregenerative life-support systems is a vital step toward long-term space exploration. The culturing of plants in a microgravity environment may be optimized by the use of appropriate sensors and controllers. This paper describes a sensor developed for determining the amount of fluid (nutrient solution) available on the surface of a porous ceramic nutrient delivery substrate to the roots of conventional crop plants. The sensor is based on the change in thermal capacitance and thermal conductance near the surface as the moisture content changes. The sensor could be employed as a data acquisition and control sensor to support the automated monitoring of plants grown in a microgravity environment.  相似文献   
17.
A ceramic material having a large dielectric constant at 77 K, ε=8000-12000, has been developed for capacitive energy storage at this temperature. A large matrix of multilayer ceramic capacitors were fabricated using conventional tape-casting methods to optimize the dielectric breakdown strength at 77 K, and measured energy storage values on these capacitors range up to 6 J/cm3 at 77 K. An unfused bank of these capacitors was voltage-cycled 105 times at 77 K without failure, and the heating effects during cycling were immeasurably small (i.e., nitrogen boiloff was monitored). An electrocaloric effect on discharge (ΔT~1 K) contributes to the thermal stability. Measurements of the frequency dependence of the dielectric properties of the ceramic at 77 K indicate a fundamental limit of about 8 μs for the switching repetition rate. Improved capacitor-manufacturing methods are discussed which can increase the energy density to the 20-30 J/cm3 range  相似文献   
18.
The USSR has always been reluctant to reveal details of failures in its space programme, and only a few failures have been annouced publically. Some official US sources list failures in the Soviet programme, although these official listings end in mid-1964. The aviation press often reports rumoured failures, and it is the job of an analyst to try and separate the wheat from the chaff.  相似文献   
19.
The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO? minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO? in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO?. There was a complex physiological response to mixtures of MgSO? and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars.  相似文献   
20.
Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter’s icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号