首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3547篇
  免费   10篇
  国内免费   6篇
航空   1366篇
航天技术   1112篇
综合类   21篇
航天   1064篇
  2022年   16篇
  2021年   41篇
  2019年   22篇
  2018年   144篇
  2017年   109篇
  2016年   119篇
  2015年   49篇
  2014年   123篇
  2013年   151篇
  2012年   130篇
  2011年   175篇
  2010年   135篇
  2009年   215篇
  2008年   205篇
  2007年   142篇
  2006年   97篇
  2005年   111篇
  2004年   103篇
  2003年   114篇
  2002年   89篇
  2001年   121篇
  2000年   46篇
  1999年   61篇
  1998年   66篇
  1997年   44篇
  1996年   49篇
  1995年   85篇
  1994年   64篇
  1993年   35篇
  1992年   47篇
  1991年   14篇
  1990年   23篇
  1989年   43篇
  1988年   11篇
  1987年   18篇
  1986年   19篇
  1985年   77篇
  1984年   67篇
  1983年   52篇
  1982年   51篇
  1981年   90篇
  1980年   27篇
  1979年   17篇
  1978年   18篇
  1977年   18篇
  1976年   16篇
  1975年   14篇
  1974年   13篇
  1972年   13篇
  1971年   11篇
排序方式: 共有3563条查询结果,搜索用时 15 毫秒
991.
We report a Nobeyama Radioheliograph (NoRH) microwave observation of a propagating feature of non thermal emission in a solar flare. The flare had a very extended source well resolved by NoRH. In the rising phase of the microwave burst, a non-thermal gyrosynchrotron source was observed by the high-rate (10 images per second) observations to propagate from one end of the loop to the other with a speed of 9 × 104 km s−1. We interpret this non-thermal propagating source is emitted from streaming electrons.  相似文献   
992.
The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 RE from the Earth’s surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.  相似文献   
993.
本文研究的问题是超声速气流流过物体时产生的气体动力和物理化学非均匀性及其对物体空气动力特性的影响。就有关流动非均匀性对温度剖面和密度的效应作了详细探讨,还仔细描述了激波与热层相互干扰时以及在激光辐射脉冲的作用下先行激波生成的情况。值得指出的是超声速气流中加入激光辐射能可能改变流动结构,在局部能量释放区域后面呈现的较高和较低压力,有助于控制飞行中物体的运动。可采取某些措施以改进飞行品质。  相似文献   
994.
利用喷气装置卸载航天器积累角动量的最小工质损耗控制   总被引:1,自引:0,他引:1  
讨论利用喷气装置卸载航天器积累的外扰角动量过程中 ,实现最小工质损耗的问题。提出了在航天器绕自己质心转动的过程中实现对这一角动量进行卸载的新思路。文中采用极大值原理求得了最优工质损耗并举出了实例  相似文献   
995.
SVET Space Greenhouse (SG)--the first automated facility for growing of higher plants in microgravity was designed in the eighty years to be used for the future BLSS. The first successful experiment with vegetables was carried out in 1990 on the MIR Space Station (SS). The experiments in SVET SG were resumed in 1995, when an American Gas Exchange Measurement System (GEMS) was added. A three-month wheat experiment was carried out as part of MIR-SHUTTLE'95 program. SVET-2 SG Bulgarian equipment of a new generation with optimised characteristics was developed (financed by NASA). The new SVET-GEMS equipment was launched on board the MIR SS and a successful six-month experiments for growing up of two crops of wheat were conducted in 1996 - 97 as part of MIR-NASA-3 program. The first of these "Greenhouse" experiments (123 days) with the goal to grow wheat through a complete life cycle is described. Nearly 300 heads developed but no seeds were produced. A second crop of wheat was planted and after 42 days the plants were frozen for biochemical investigations. The main environmental parameters during the six-month experiments in SVET (substrate moisture and lighting period) are given. The results and the contribution to BLSS are discussed.  相似文献   
996.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation   总被引:1,自引:0,他引:1  
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.  相似文献   
997.
The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between ?0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, ?7.5±0.4 ‰/amu for Mg, ?8.9±0.6 ‰/amu for Si, and ?22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δm/m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).  相似文献   
998.
Space communications urgently need an effective transmission control mechanism. This paper presents an experimental, comparative analysis of window-based transmission control, rate-based transmission control, and a hybrid of the two over error-prone, congestion-free, high-latency, point-to-point space communication links simulated using the space-to-ground link simulation (SGLS) test-bed. The results revealed that the traffic shaping mechanism of rate-based transmission protocol is more effective than the bursting flow of window-based protocol over simulated space communication links with a high error rate and a long link delay. The window-based transmission mechanisms show performance degradation due to traffic bursts and frequent packet retransmissions caused by their acknowledgment (ACK)-clocked transmission control algorithms. Pure rate-control is always preferable to other mechanisms in the simulated congestion-free, error-prone, point-to-point, geostationary-Earth orbit (GEO)-space communication channels, and its advantages become more pronounced when the channel rates are asymmetric. The performance differences come from their different behavior in controlling data transmission.  相似文献   
999.
The cross correlation of daily values of coronal hole areas at the eastern limb of the Sun constructed from the ground based measurements of the green coronal line and daily mean cosmic ray intensities over long time periods shows asymmetry: at the maximum of their 27 day cycle, cosmic ray intensities are better correlated with coronal hole areas 66 days before than with the current value. This indicates the potential for using coronal emission data as one of the parameters for eventual prediction of the level of cosmic ray flux at neutron monitor energies.  相似文献   
1000.
S3 absorption cross section equals 6×10−17 cm2 at 400 nm, 6 × 10−19 cm2 at 500 nm (less by a factor of 4 than that given by Sanko), 4×10−20 cm2 at 600 nm. That of S4 equals 1.5 × 10−17 cm2 at 450 nm, 8 × 10−17 cm2 at 500 nm, and 4.7 × 10−17 cm2 at 600 nm. Preliminary evaluation of the S3 mixing ratio in the lower atmosphere of Venus is (8±3)×10−11 at 5 to 25km according to the Venera 14 measurements and several times lower at the locations of the Veneras-11 and -13.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号