首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3152篇
  免费   5篇
  国内免费   11篇
航空   1671篇
航天技术   1077篇
综合类   9篇
航天   411篇
  2018年   36篇
  2017年   19篇
  2016年   21篇
  2014年   54篇
  2013年   77篇
  2012年   59篇
  2011年   105篇
  2010年   82篇
  2009年   112篇
  2008年   175篇
  2007年   90篇
  2006年   60篇
  2005年   77篇
  2004年   78篇
  2003年   100篇
  2002年   52篇
  2001年   100篇
  2000年   48篇
  1999年   80篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   125篇
  1994年   100篇
  1993年   66篇
  1992年   101篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   32篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1968年   16篇
  1967年   20篇
  1966年   16篇
排序方式: 共有3168条查询结果,搜索用时 31 毫秒
251.
252.
The proposed KAAD (knowledge-based automated air defense) system demonstrates a man-machine environment for airspace defense systems. When the unknown aircraft is hostile, a threat rating and response methods are generated by the system. It serves as a double-check decision-making system for a war control center. In addition to this application, the KAAD system can also be a useful tool as a training program for the war controller. The capabilities of the system are limited due to the shortage of knowledge resources. It requires communications among war controllers and air fighter pilots to organize a practical knowledge base. It is shown that the KAAD system can be combined with an automated ATC (air traffic control) system to become a practical system for air defense applications  相似文献   
253.
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased.  相似文献   
254.
CFAR data fusion center with inhomogeneous receivers   总被引:1,自引:0,他引:1  
Detection systems with distributed sensors and data fusion are increasingly used by surveillance systems. A system formed by N inhomogeneous constant false alarm rate (CFAR) detectors (cell-averaging (CA) and ordered statistic (OS) CFAR detectors) is studied. A recursive formulation of an algorithm that permits a fixed level of false alarms in the data fusion center is presented, to set the optimum individual threshold levels in the CFAR receivers and the optimum `K out of N' decision rule in order to maximize the total probability of detection. The algorithm also considers receivers of different quality or with different communication channel qualities connecting them with the fusion center. This procedure has been applied to several hypothetical networks with distributed CA-CFAR and OS-CFAR receivers and for Rayleigh targets and interference, and it was seen that in general the fusion decision OR rule is not always the best  相似文献   
255.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
256.
文章介绍了法国宇航环境工程试验中心(INTESPACE)为满足阿里安娜-V的需要所准备进行的一系列改造.这些工作主要有:增建一个适合大型容器用的空气锁,保持厅内连续的10万级洁净度,建立一个紧凑试验区域,建造一面强效吸波墙,扩展振动设备能力以及改造原热真空设备.这些工作计划于2001年初全部完成.改造工作的完成将保证INTESPACE在独立的欧洲试验中心中继续处于领先地位.  相似文献   
257.
Zetzer  J. I.  Kozlov  S. I.  Rybakov  V. A.  Ponomarenko  A. V.  Smirnova  N. V.  Romanovsky  Yu. A.  Meng  C.-I.  Erlandson  R.  Stoyanov  B. 《Cosmic Research》2002,40(3):233-240
The measurements of infrared emission from an artificial structure, which was generated during the Fluxus experiment with plasma jet injection into the atmosphere, are obtained and discussed for the first time. Additional experimental data on the airglow in the visible spectral band of the disturbed region of the atmosphere are presented. A generalized analysis of the data is given.  相似文献   
258.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
259.
The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of \({\sim}25\) experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions.  相似文献   
260.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号