全文获取类型
收费全文 | 198篇 |
免费 | 1篇 |
专业分类
航空 | 93篇 |
航天技术 | 55篇 |
综合类 | 1篇 |
航天 | 50篇 |
出版年
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 7篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 7篇 |
2013年 | 9篇 |
2012年 | 6篇 |
2011年 | 15篇 |
2010年 | 15篇 |
2009年 | 15篇 |
2008年 | 11篇 |
2007年 | 6篇 |
2006年 | 7篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 6篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 9篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1981年 | 5篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 2篇 |
1967年 | 2篇 |
1966年 | 1篇 |
排序方式: 共有199条查询结果,搜索用时 15 毫秒
141.
Mars Science Laboratory Mission and Science Investigation 总被引:5,自引:0,他引:5
John P. Grotzinger Joy Crisp Ashwin R. Vasavada Robert C. Anderson Charles J. Baker Robert Barry David F. Blake Pamela Conrad Kenneth S. Edgett Bobak Ferdowski Ralf Gellert John B. Gilbert Matt Golombek Javier Gómez-Elvira Donald M. Hassler Louise Jandura Maxim Litvak Paul Mahaffy Justin Maki Michael Meyer Michael C. Malin Igor Mitrofanov John J. Simmonds David Vaniman Richard V. Welch Roger C. Wiens 《Space Science Reviews》2012,170(1-4):5-56
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck. 相似文献
142.
Pamela G. Conrad Jennifer L. Eigenbrode Max O. Von?der Heydt Claus T. Mogensen John Canham Dan N. Harpold Joel Johnson Therese Errigo Daniel P. Glavin Paul R. Mahaffy 《Space Science Reviews》2012,170(1-4):479-501
Mars Science Laboratory’s Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG). 相似文献
143.
Christina Plainaki Tim A. Cassidy Valery I. Shematovich Anna Milillo Peter Wurz Audrey Vorburger Lorenz Roth André Galli Martin Rubin Aljona Blöcker Pontus C. Brandt Frank Crary Iannis Dandouras Xianzhe Jia Davide Grassi Paul Hartogh Alice Lucchetti Melissa McGrath Valeria Mangano Alessandro Mura Stefano Orsini Chris Paranicas Aikaterini Radioti Kurt D. Retherford Joachim Saur Ben Teolis 《Space Science Reviews》2018,214(1):40
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions. 相似文献
144.
Caitlin J. Ahrens William M. Grundy Kathleen E. Mandt Paul D. Cooper Orkan M. Umurhan Vincent F. Chevrier 《Space Science Reviews》2018,214(8):130
This review of Pluto laboratory research presents some of the recent advancements and motivations in our understanding enabled by experimental simulations, the need for experiments to facilitate models, and predictions for future laboratory work. The spacecraft New Horizons at Pluto has given a large amount of scientific data already rising to preliminary results, spanning from the geology to the atmosphere. Different ice mixtures have now been detected, with the main components being nitrogen, methane, and carbon monoxide. Varying geology and atmospheric hazes, however, gives us several questions that need to be addressed to further our understanding. Our review summarizes the complexity of Pluto, the motivations and importance of laboratory simulations critical to understanding the low temperature and pressure environments of icy bodies such as Pluto, and the variability of instrumentation, challenges for research, and how simulations and modeling are complimentary. 相似文献
145.
Raj Paul Guleria Jagdish Chandra Kuniyal Pitamber Prasad Dhyani 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The measurements of aerosol optical properties were carried out during April 2006 to March 2011 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya, using the application of ground-based Multi-wavelength Radiometer (MWR) and space-born Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensors. The average (±standard deviation) values of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient during the entire measurement period were 0.25 ± 0.09, 1.15 ± 0.42 and 0.12 ± 0.06 respectively. About 86% AOD values retrieved from MODIS remote sensor were found within an uncertainty limit (Δτpλ = ±0.05 ± 0.15τpλ). In general, the MWR derived AOD values were higher than that of MODIS retrieval with absolute difference ∼0.02. During the entire period of measurement space-born MODIS remote sensor and ground-based MWR observation showed good correspondence with significant correlation coefficient ∼0.78 and root mean square difference ∼0.06. For daily observations the relative difference between these two estimates stood less than 9%. However, satellite-based and ground-based observation showed good correspondence, but further efforts still needed to eliminate systematic errors in the existing MODIS algorithm. 相似文献
146.
B. Paul B.K. De A. Guha 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(3):1227-1233
Following Tanna et al. (2013), we computed the percentage of occurrence of S4 index for the period of 2012–2015 using the data of the dual frequency GPS receiver at the Tripura University, Agartala station (23.76°N, 91.26°E) situated at the northern crest of the equatorial ionization anomaly (EIA) region of the Indian Subcontinent. We have observed discrepancy in the results contradicting the actual scintillation occurrence. The distinctly noticeable discrepancy is that the maximum occurrence month is shifted to April 2013 instead of March 2014. The problem arises due to the denominator term used in the percentage of occurrence ratio i.e. the total number of days of observed scintillation activity during the complete period under consideration. But the conventional percentage of occurrence methodology uses the number of days of observation (the total number of days for which data is available) during each month in the denominator. It correctly assigns the maximum occurrence to March 2014 instead of April 2013 and the obtained monthly statistics follow the solar activity during this period. 相似文献
147.
Melinda Nagy Alexandre Lemerle Paul Charbonneau 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(4):1425-1433
The solar dipole moment at activity minimum is a good predictor of the strength of the subsequent solar cycle. Through a systematic analysis using a state-of-the-art D solar dynamo model, we found that bipolar magnetic regions (BMR) with atypical characteristics can modify the strength of the next cycle via their impact on the buildup of the dipole moment as a sunspot cycle unfolds. In addition to summarizing these results, we present further effects of such “rogue” BMRs. These have the ability to generate hemispheric asymmetry in the subsequent sunspot cycle, since they modify the polar cap flux asymmetry of the ongoing cycle. We found strong correlation between the polar cap flux asymmetry of cycle i and the total pseudo sunspot number asymmetry of cycle . Good correlation also appears in the case of the time lag of the hemispheres of cycle . 相似文献
148.
Paul S. Wesson 《Space Science Reviews》1984,39(1-2):153-161
A discussion is given of the role of dimensional fundamental constants in gravitational and particle physics. It is concluded that such constants can most usefully be interpreted as representing asymptotic states. This interpretation is in agreement with the widespread use of dimensional analysis in astronomy, and implies that angular momentum can be expected to vary like the mass squared in the astronomical limit of large masses. 相似文献
149.
150.