全文获取类型
收费全文 | 3670篇 |
免费 | 25篇 |
国内免费 | 5篇 |
专业分类
航空 | 1864篇 |
航天技术 | 1247篇 |
综合类 | 13篇 |
航天 | 576篇 |
出版年
2021年 | 33篇 |
2019年 | 31篇 |
2018年 | 67篇 |
2017年 | 49篇 |
2016年 | 48篇 |
2015年 | 26篇 |
2014年 | 74篇 |
2013年 | 93篇 |
2012年 | 87篇 |
2011年 | 132篇 |
2010年 | 102篇 |
2009年 | 148篇 |
2008年 | 192篇 |
2007年 | 96篇 |
2006年 | 84篇 |
2005年 | 97篇 |
2004年 | 87篇 |
2003年 | 118篇 |
2002年 | 70篇 |
2001年 | 125篇 |
2000年 | 76篇 |
1999年 | 88篇 |
1998年 | 108篇 |
1997年 | 70篇 |
1996年 | 96篇 |
1995年 | 132篇 |
1994年 | 103篇 |
1993年 | 68篇 |
1992年 | 92篇 |
1991年 | 36篇 |
1990年 | 39篇 |
1989年 | 86篇 |
1988年 | 44篇 |
1987年 | 39篇 |
1986年 | 38篇 |
1985年 | 103篇 |
1984年 | 98篇 |
1983年 | 82篇 |
1982年 | 83篇 |
1981年 | 95篇 |
1980年 | 28篇 |
1979年 | 28篇 |
1978年 | 31篇 |
1977年 | 27篇 |
1976年 | 19篇 |
1975年 | 36篇 |
1974年 | 27篇 |
1973年 | 18篇 |
1972年 | 33篇 |
1971年 | 18篇 |
排序方式: 共有3700条查询结果,搜索用时 15 毫秒
121.
Ch. Jacobi C. Arras D. Kürschner W. Singer P. Hoffmann D. Keuer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
During 2004 and 2005 measurements of mesospheric/lower thermospheric (80–100 km) winds have been carried out in Germany using three different ground-based systems, namely a meteor radar (36.2 MHz) at the Collm Observatory (51.3°N, 13°E), a MF radar (3.18 MHz) at Juliusruh (54.6°N, 13.4°E) and the LF D1 measurements using a transmitter (177 kHz) at Zehlendorf near Berlin and receivers at Collm with the reflection point at 52.1°N, 13.2°E. This provides the possibility of comparing the results of different radar systems in nearly the same measuring volume. Meteor radar winds are generally stronger than the winds observed by MF and especially by LF radars. This difference is small near 80 km but increases with height. The difference between meteor radar and medium frequency radar winds is larger during winter than during summer, which might indicate an indirect influence of gravity waves on spaced antenna measurements. 相似文献
122.
R. Manuel S.E.S. FerreiraM.S. Potgieter R.D. StraussN.E. Engelbrecht 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Time-dependent cosmic ray modulation is calculated over multiple solar cycles using our well established two-dimensional time-dependent modulation model. Results are compared to Voyager 1, Ulysses and IMP cosmic ray observations to establish compatibility. A time-dependence in the diffusion and drift coefficients, implicitly contained in recent expressions derived by , , and , is incorporated into the cosmic ray modulation model. This results in calculations which are compatible with spacecraft observations on a global scale over consecutive solar cycles. This approach compares well to the successful compound approach of Ferreira and Potgieter (2004). For both these approaches the magnetic field magnitude, variance of the field and current sheet tilt angle values observed at Earth are transported time-dependently into the outer heliosphere. However, when results are compared to observations for extreme solar maximum, the computed step-like modulation is not as pronounced as observed. This indicates that some additional merging of these structures into more pronounced modulation barriers along the way is needed. 相似文献
123.
A.K. Sharma D.P. Nade S.S. Nikte P.T. Patil R.N. Ghodpage R.S. Vhatkar M.V. Rokade S. Gurubaran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12. 相似文献
124.
G.D. Aburjania L.S. Alperovich A.G. Khantadze O.A. Kharshiladze 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):624-627
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field. 相似文献
125.
D Volkmann 《Acta Astronautica》1988,17(2):267-270
During the Spacelab mission D1 different organisms were investigated at the unicellular and multicellular level respectively. Microgravity affects growth and development of the organisms in a different manner, some processes are enhanced, others are inhibited. On the other hand, there are a lot of parameters. e.g. circadian rhythm or cell and organ polarity, which seem to be exclusively under genetical control. 相似文献
126.
An automatic data processing system for the evaluation of statistically occurring Doppler-difference bursts is described. In addition to the higher accuracy compared with the data acquisition procedures known so far, this technique allows the Doppler-difference method to be used as an operational instrument for investigations into turbulent flows, especially in the case of low particle density and extremely small turbulence degrees. 相似文献
127.
V.D. Kuznetsov I.I. Sobelman I.A. Zhitnik S.V. Kuzin Yu.D. Kotov Yu.E. Charikov S.N. Kuznetsov E.P. Mazets A.A. Nusinov A.M. Pankov J. Sylwester 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined. 相似文献
128.
D.I. Kosenko S.I. Blinnikov K.A. Postnov P. Lundqvist E.I. Sorokina 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2705-2710
Time-dependent thermal X-ray spectra are calculated from physically plausible conditions around GRB. It is shown that account for time-dependent ionization processes strongly affects the observed spectra of hot rarefied plasma. These calculations may provide an alternative explanation to the observed X-ray lines of early GRBs afterglows (such as GRB 011211). Our technique will allow one to obtain independent constraints on the GRB collimation angle and on the clumpiness of circumstellar matter. 相似文献
129.
The calculation of particle trajectories in the Earth's magnetic field has been a subject of interest since the time of Störmer. The fundamental problem is that the trajectory-tracing process involves using mathematical equations that have `no solution in closed form'. This difficulty has forced researchers to use the `brute force' technique of numerical integration of many individual trajectories to ascertain the behavior of trajectory families or groups. As the power of computers has improved over the decades, the numerical integration procedure has grown more tractable and while the problem is still formidable, thousands of trajectories can be computed without the expenditure of excessive resources. As particle trajectories are computed and the characteristics analyzed we can determine the cutoff rigidity of a specific location and viewing direction and direction and deduce the direction in space of various cosmic ray anisotropies. Unfortunately, cutoff rigidities are not simple parameters due to the chaotic behavior of the cosmic-ray trajectories in the cosmic ray penumbral region. As the computational problem becomes more manageable, there is still the issue of the accuracy of the magnetic field models. Over the decades, magnetic field models of increasing complexity have been developed and utilized. The accuracy of trajectory calculations employing contemporary magnetic field models is sufficient that cosmic ray experiments can be designed on the basis of trajectory calculations. However, the Earth's magnetosphere is dynamic and the most widely used magnetospheric models currently available are static. This means that the greatest uncertainly in the application of charged particle trajectories occurs at low energies. 相似文献
130.
E. H. B. M. Gronenschild R. Mewe N. J. Westergaard J. Heise F. D. Seward T. Chlebowski N. P. M. Kuin A. C. Brinkman J. H. Dijkstra H. W. Schnopper 《Space Science Reviews》1981,30(1-4):185-189
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components. 相似文献