首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   0篇
航空   54篇
航天技术   20篇
航天   16篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   5篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1968年   2篇
  1967年   3篇
排序方式: 共有90条查询结果,搜索用时 421 毫秒
1.
2.
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.  相似文献   
3.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   
4.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   
5.
6.
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems.  相似文献   
7.
In this paper we present an initial survey of results from the plasma wave experiments on the ISEE-1 and -2 spacecraft which are in nearly identical orbits passing through the Earth's magnetosphere at radial distances out to about 22.5R e . Essentially every crossing of the Earth's bow shock can be associated with an intense burst of electrostatic and whistler-mode turbulence at the shock, with substantial wave intensities in both the upstream and downstream regions. Usually the electric and magnetic field spectrum at the shock are quite similar for both spacecraft, although small differences in the detailed structure are sometimes apparent upstream and downstream of the shock, probably due to changes in the motion of the shock or propagation effects. Upstream of the shock emissions are often observed at both the fundamental, f - p , and second harmonic, 2f p - , of the electron plasma frequency. In the magnetosphere high resolution spectrograms of the electric field show an extremely complex distribution of plasma and radio emissions, with numerous resonance and cutoff effects. Electron density profiles can be obtained from emissions near the local electron plasma frequency. Comparisons of high resolution spectrograms of whistler-mode emissions such as chorus detected by the two spacecraft usually show a good overall similarity but marked differences in detailed structure on time scales less than one minute. Other types of locally generated waves, such as the (n+1/2)f - g electron cyclotron waves, show a better correspondence between the two spacecraft. High resolution spectrograms of kilometric radio emissions are also presented which show an extremely complex frequency-time structure with many closely spaced narrow-band emissions.  相似文献   
8.
Aeronautical telemetry using multiple-antenna transmitters   总被引:1,自引:0,他引:1  
The placement of multiple antennas on an air vehicle is one possible practice for overcoming signal obstruction created by vehicle maneuvering during air-to-ground transmission. Unfortunately, for vehicle attitudes where more than one of these antennas has a clear path to the receiving station, this practice also leads to self-interference nulls, resulting in dramatic degradation in the average signal integrity. This paper discusses application of unitary space-time codes such as the Alamouti transmit diversity scheme and unitary differential space-time codes to overcome the self-interference effect observed in such systems. The mathematical foundations of these techniques within the context of this application as well as computational performance gains associated with their implementation are provided. Issues such as the cost of channel estimation for trained techniques as well as the throughput performance of nondifferential and differential schemes for realistic air-vehicle motion are analyzed  相似文献   
9.
A variety of new communication functions will become available near the end of the decade when mobile satellite services (MSS) are introduced commercially in the United States and Canada. Mobile radios, hand carried radios and small fixed transponders will communicate directly through satellites into the telephone network or to private base stations. Voice, data, and position fixing services will be distance insensitive with good performance in difficult terrain and remote locations. Experiments with NASA satellites and studies in the U.S. and Canada demonstrated the technical feasibility and practical applications of mobile satellites. In 1983 Mobile Satellite Corporation, followed by Skylink Corporation, applied to the FCC for authorization to build and operate a land and aeronautical mobile satellite system for the United States. Canada had advanced its plans for an MSAT system. In response to these initiatives, the FCC issued a ``Notice of Proposed Rulemaking' that proposed the allocation of radio spectrum for the new service and asked for applications from prospective providers. Twelve applications were received. The shortage of radio spectrum in the U.S. has resulted in much contention over the proposed allocations, and the numerous applications have introduced competing systems concepts. The paper describes a likely system implementation, its services and markets, and the current regulatory status.  相似文献   
10.
Ionospheric total electron content and the F-region maximum electron density at a number of stations in the equatorial region, during the recent solar activity maximum period 1979 to 1980, show significant differences between the two equinoctial periods. Ionization during the month of March is higher than in September, irrespective of the station location both in northern and southern hemispheres, and in different longitude sectors. The observed pattern is compared with those predicted by different models, in particular with one of the authors which includes processes such as ionization production, loss, electrodynamic drifts, winds and global composition changes involved in the equatorial ionosphere. It is found that a change in the neutral composition is primarily responsible for the observed F-region density differences between March and September.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号