首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   9篇
  国内免费   5篇
航空   76篇
航天技术   29篇
综合类   63篇
航天   138篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   11篇
  2011年   14篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   12篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   9篇
  2002年   8篇
  2001年   16篇
  2000年   1篇
  1999年   4篇
  1998年   11篇
  1997年   7篇
  1996年   11篇
  1995年   13篇
  1994年   40篇
  1993年   7篇
  1992年   3篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   9篇
  1987年   7篇
  1986年   3篇
  1985年   13篇
  1984年   10篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1978年   1篇
  1975年   2篇
  1968年   1篇
排序方式: 共有306条查询结果,搜索用时 31 毫秒
231.
In cardio-vascular hemodynamic, the arterial pulsatility, represented by the arterial pulse pressure (PP= systolic blood pressure-diastolic blood pressure), is different from one site to another, in opposite with the mean blood pressure almost identical in the whole body in supine position (or in microgravity). This is due to the arterial tree geometry and regional differences in the distensibility properties of the arterial wall. As the level of blood pressure opposed to the cardiac left ventricle work is the central pressure, on one hand and as the arterial pulsatility at the site of arterial baro-receptors (located on aortic arch and carotid arteries' bifurcation) regulates the sympathetic and vagal control of heart and peripheral resistances on the other hand, to determine the evolution of this central pulse pressure is of major importance in the knowledge of cardio-vascular hemodynamic during hyper or hypogravity as observed during parabolic flights. The aim of this study was to evaluate noninvasively the carotid artery pulsatility and mechanic properties during parabolic flights.  相似文献   
232.
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.  相似文献   
233.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   
234.
Radiation Risk Radiometer-Dosimeter E (R3DE) served as a device for measuring ionizing and non-ionizing radiation as well as cosmic radiation reaching biological samples located on the EXPOSE platform EXPOSE-E. The duration of the mission was almost 1.5 years (2008-2009). With four channels, R3DE detected the wavelength ranges of photosynthetically active radiation (PAR, 400-700?nm), UVA (315-400?nm), UVB (280-315?nm), and UVC (<280?nm). In addition, the temperature was recorded. Cosmic ionizing radiation was assessed with a 256-channel spectrometer dosimeter (see separate report in this issue). The light and UV sensors of the device were calibrated with spectral measurement data obtained by the Solar Radiation and Climate Experiment (SORCE) satellite as standard. The data were corrected with respect to the cosine error of the diodes. Measurement frequency was 0.1?Hz. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m(-2) for PAR, 269.03 MJ m(-2) for UVA, 45.73 MJ m(-2) for UVB, or 18.28 MJ m(-2) for UVC. Registered sunshine duration during the mission was about 152 days (about 27% of mission time).The surface of EXPOSE was most likely turned away from the Sun for considerably longer. R3DE played a crucial role on EXPOSE-EuTEF (EuTEF, European Technology Exposure Facility), because evaluation of the astrobiology experiments depended on reliability of the data collected by the device. Observed effects in the samples were weighted by radiation doses measured by R3DE.  相似文献   
235.
Time-domain astrophysics will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino. In the soft X-ray regime, the novel micro-pore lobster-eye optics provides a promising technology to realise, for the first time, focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view. In this context Einstein Probe, a soft X-ray all-sky monitor mission, was proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences. This paper reviews the most important science developments and key questions in this field towards 2020 and beyond, and how to achieve them technologically. It also introduces the Einstein Probe mission, including its key science goals and mission definition, as well as some of the key technological issues.   相似文献   
236.
An isothermal numerical study of effusion cooling flow is conducted using a large eddy simulation(LES) approach.Two main types of cooling are considered,namely tangential film cooling and oblique patch effusion cooling.To represent tangential film cooling,a simplified model of a plane turbulent wall jet along a flat plate in quiescent surrounding fluid is considered.In contrast to a classic turbulent boundary layer flow,the plane turbulent wall jet possesses an outer free shear flow region,an inner near wall region and an interaction region,characterised by substantial levels of turbulent shear stress transport.These shear stress characteristics hold significant implications for RANS modelling,implications that also apply to more complex tangential film cooling flows with non-zero free stream velocities.The LES technique used in the current study provides a satisfactory overall prediction of the plane turbulent wall jet flow,including the initial transition region,and the characteristic separation of the zero turbulent shear stress and zero shear strain locations.Oblique effusion patch cooling is modelled using a staggered array of 12 rows of effusion holes,drilled at 30° to the flat plate surface.The effusion holes connect two channels separated by the flat plate.Specifically,these comprise of a channel representing the combustion chamber flow and a cooling air supply channel.A difference in pressure between the two channels forces air from the cooling supply side,through the effusion holes,and into the combustion chamber side.Air from successive effusion rows coalesces to form an aerodynamic film between the combustion chamber main flow and the flat plate.In practical applications,this film is used to separate the hot combustion gases from the combustion chamber liner.The numerical model is shown to be capable of accurately predicting the injection,penetration,downstream decay,and coalescence of the effusion jets.In addition,the numerical model captures entrainment of the combustion chamber mainstream flow towards the wall by the presence of the effusion jets.Two contra-rotating vortices,with axes of rotation along the stream-wise direction,are predicted as a result of this entrainment.The presence and characteristics of these vortices are in good agreement with previous published research.   相似文献   
237.
定常吹/吸气控制凸包分离的数值研究   总被引:4,自引:0,他引:4  
针对凸包流动分离主动控制开展了参数化数值研究。凸包模型为NASA设计用于流动分离主动控制的内外流通用模型。重点研究运行参数变化时定常吹/吸气影响。首先采用试验数据标定了所开发程序,然后进行了一系列参数化数值模拟。结果显示:定常吸气作用明显不同于定常吹气。对于所给定几何模型,不管吸气流量增加到多大,吸气都无法消除分离,而吹气可以做到。详细展示流动结构并讨论了流动机理。   相似文献   
238.
We investigate the properties of interplanetary inhomogeneities generating long-lasting mid-latitude Pc1, 2 geomagnetic pulsations. The data from the Wind and IMP 8 spacecrafts, and from the Mondy and Borok midlatitude magnetic observatories are used in this study. The pulsations under investigation develop in the maximum and early recovery phase of magnetic storms. The pulsations have amplitudes from a few tens to several hundred pT andlast more than seven hours. A close association of the increase (decrease) in solar wind dynamic pressure (Psw) with the onset or enhancement (attenuation or decay) of these pulsations has been established. Contrary to high-latitude phenomena, there is a distinctive feature of the interplanetary inhomogeneities that are responsible for generation of long-lasting mid-latitude Pc1, 2. It is essential that the effect of the quasi-stationary negative Bz-component of the interplanetary magnetic field on the magnetosphere extends over 4 hours. Only then are the Psw pulses able to excite the above-mentioned type of mid-latitude geomagnetic pulsations. Model calculations show that in the cases under study the plasmapause can form in the vicinity of the magnetic observatory. This implies that the existence of an intense ring current resulting from the enhanced magnetospheric convection is necessary for the Pc1, 2 excitation. Further, the existence of the plasmapause above the observation point (as a waveguide) is necessary for long-lasting Pc1 waves to arrive at the ground.   相似文献   
239.
为探究反射面天线形变对风云卫星毫米波和亚毫米波成像仪(MMSI)的亮温图像质量的影响,运用基于表面电流积分的物理光学方法计算天线辐射方向图,探究不同形式反射面天线形变下天线辐射特性的变化规律。结合MMSI的亮温图像的处理结果,评价图像质量的变化。实验结果表明:反射面天线的形变面积、形变位置和副反射面晃动发生变化时,天线的主瓣增益、副瓣电平和波束宽度等关键指标发生规律性变化,对MMSI的亮温图像质量产生不同形式的影响。当反射面天线的形变面积增大时,天线的主瓣增益减小,副瓣电平升高,进一步导致分辨率降低,噪声水平升高,亮温图像质量变差。  相似文献   
240.
Submillimeter interferometry has the potential to image supermassive black holes on event horizon scales, providing tests of the theory of general relativity and increasing our understanding of black hole accretion processes. The Event Horizon Telescope (EHT) performs these observations from the ground, and its main imaging targets are Sagittarius A* in the Galactic Center and the black hole at the center of the M87 galaxy. However, the EHT is fundamentally limited in its performance by atmospheric effects and sparse terrestrial (u,v)-coverage (Fourier sampling of the image). The scientific interest in quantitative studies of the horizon size and shape of these black holes has motivated studies into using space interferometry which is free of these limitations. Angular resolution considerations and interstellar scattering effects push the desired observing frequency to bands above 500 GHz.
This paper presents the requirements for meeting these science goals, describes the concept of interferometry from Polar or Equatorial Medium Earth Orbits (PECMEO) which we dub the Event Horizon Imager (EHI), and utilizes suitable space technology heritage. In this concept, two or three satellites orbit at slightly different orbital radii, resulting in a dense and uniform spiral-shaped (u,v)-coverage over time. The local oscillator signals are shared via an inter-satellite link, and the data streams are correlated on-board before final processing on the ground. Inter-satellite metrology and satellite positioning are extensively employed to facilitate the knowledge of the instrument position vector, and its time derivative. The European space heritage usable for both the front ends and the antenna technology of such an instrument is investigated. Current and future sensors for the required inter-satellite metrology are listed. Intended performance estimates and simulation results are given.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号