The Scanning Sky Monitor is one of the experiments onboard the ASTROSAT, an Indian multiwavelength astronomy satellite mission. This experiment will detect and monitor X-ray transients in the energy band 2–10 keV. It is similar in design to the ASM on RXTE. It consists of position-sensitive proportional counters with one-dimensional mask. We describe the configuration of the experiment. We also discuss some of the results obtained using a detector which has already been fabricated and tested in our laboratory. 相似文献
This paper deals with the application of SeaWIFS images to characterize spatial and temporal variability of fronts in the Rio de la Plata estuarine system over the period 2000–2003. We aim to depict the relationship between river outflow and variability of fronts’ loci on monthly to ENSO-related timescales and the influence of the winds along Rio de la Plata (axial winds) on the abrupt changes in frontal dynamics over synoptic timescales. During the studied period both La Niña (July 1999–June 2000) and El Niño (April 2002–May 2003) events induced significant displacements of fronts. Three distinct fronts were analyzed between river, estuarine, coastal and marine waters of the Rio de la Plata: Main Turbidity Front, Main Marine Front, and Secondary Marine Front. Their number, location and separation seem to be mainly related to river outflow and second, to fresh (>8 m/s) axial winds. During low discharge periods (i.e. summer time and/or La Niña events) these winds induce abrupt changes in the location of fronts (100–200 km) and greater separation between them over synoptic timescale, whereas during high river discharge or ENSO years some of the variability of fronts location is explained by the river’s outflow fluctuations, especially by the high variability of the River Uruguay discharge. 相似文献
Blue jets are beams of blue light propagating from the tops of active thunderclouds up to altitudes of ~50 km. They resemble tall trees with quasi-vertical trunk and filamentary branches. Their apparent speeds are in the range of 10 s to 100 s km/s. Other events, having essentially lower terminal altitudes (<26 km), are named blue starters. These phenomena represent the first documented class of upward electrical discharges in the stratosphere. Some of upward discharges, termed gigantic jets, propagate into the lower ionosphere at much higher speeds in the final phase. We describe salient features of the upward discharges in the atmosphere, give an assessment of the theories of their development, and discuss the consequences for the electrodynamics and chemistry of the stratosphere. We argue that this upward lightning phenomenon can be understood in terms of the bi-directional leader, emerging from the anvil. 相似文献
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma. 相似文献
In the paper, processes of high-energy electron beam interaction with plasma particles in a discharge channel of a stationary plasma thruster are analyzed and the results are presented. 相似文献
In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.
In the above-titled paper (see ibid., vol.AES-23, p.568-82, July 1987) M.I. Dadi and J.R. Marks II studied the relative efficiencies of the Neyman-Pearson optimal detector with respect to the linear and sign detectors, for the detection of a constant signal in additive Laplace noise. By applying the central limit theorem, they derived expressions for three types of asymptotic relative efficiencies (AREs). However, as noted in the above paper, the Gaussian approximation to the sign detector fails to yield the correct asymptotic efficiency. The commenter derives the correct ARE of the optimal detector with respect to the sign detector for the Laplace noise 相似文献