首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5269篇
  免费   5篇
  国内免费   10篇
航空   2467篇
航天技术   1644篇
综合类   12篇
航天   1161篇
  2021年   46篇
  2019年   24篇
  2018年   191篇
  2017年   159篇
  2016年   84篇
  2015年   43篇
  2014年   91篇
  2013年   133篇
  2012年   146篇
  2011年   277篇
  2010年   225篇
  2009年   293篇
  2008年   305篇
  2007年   230篇
  2006年   91篇
  2005年   161篇
  2004年   148篇
  2003年   141篇
  2002年   97篇
  2001年   143篇
  2000年   75篇
  1999年   98篇
  1998年   128篇
  1997年   82篇
  1996年   88篇
  1995年   121篇
  1994年   145篇
  1993年   76篇
  1992年   87篇
  1991年   34篇
  1990年   44篇
  1989年   79篇
  1988年   35篇
  1987年   34篇
  1986年   39篇
  1985年   144篇
  1984年   122篇
  1983年   98篇
  1982年   84篇
  1981年   169篇
  1980年   34篇
  1979年   36篇
  1978年   41篇
  1977年   35篇
  1976年   32篇
  1975年   39篇
  1974年   34篇
  1973年   32篇
  1972年   49篇
  1970年   24篇
排序方式: 共有5284条查询结果,搜索用时 203 毫秒
301.
The results of research in a process of a probe rocket berthing to an asteroid are presented. Control laws were obtained as solutions of three problems, namely berthing considering transient processes in a rocket engine, fastest berthing with regard to fuel consumption and berthing in a scheduled time considering fuel consumption. A program trajectory obtained at solving of the first problem is suitable for mathematical modeling of berthing with the feedback control law and stabilization of angular motion. The solutions of the problems are reduced to simple formulas for controlling parameters calculation in the corresponding structures of control laws. The results can be applied in designing promising space vehicles intended for berthing to other space objects.  相似文献   
302.
Cole  David G. 《Space Science Reviews》2003,107(1-2):295-302
Terrestrial technology is now, and increasingly, sensitive to space weather. Most space weather is caused by solar storms and the resulting changes to the Earth's radiation environment and the magnetosphere. The Sun as the driver of space weather is under intense observation but remains to be adequately modelled. Recent spacecraft measurements are greatly improving models of solar activity, the interaction of the solar wind with the magnetosphere, and models of the radiation belts. In-situ data updates the basic magnetospheric model to provide specific details of high-energy electron flux at satellite orbits. Shock wave effects at the magnetopause can also be coarsely predicted. However, the specific geomagnetic effects at ground level depend on the calculation of magnetic and electric fields and further improvements are needed. New work on physical models is showing promise of raising geomagnetic and ionospheric predictability above the synoptic climatological level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
303.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
304.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
305.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   
306.
Mende  S.B.  Heetderks  H.  Frey  H.U.  Stock  J.M.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Habraken  S.  Renotte  E.  Jamar  C.  Rochus  P.  Gerard  J.-C.  Sigler  R.  Lauche  H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%.  相似文献   
307.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   
308.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   
309.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
310.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号