首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5086篇
  免费   13篇
  国内免费   8篇
航空   2328篇
航天技术   1822篇
综合类   18篇
航天   939篇
  2021年   55篇
  2019年   29篇
  2018年   123篇
  2017年   82篇
  2016年   81篇
  2015年   43篇
  2014年   147篇
  2013年   159篇
  2012年   168篇
  2011年   220篇
  2010年   149篇
  2009年   255篇
  2008年   324篇
  2007年   142篇
  2006年   119篇
  2005年   156篇
  2004年   129篇
  2003年   170篇
  2002年   104篇
  2001年   175篇
  2000年   85篇
  1999年   108篇
  1998年   139篇
  1997年   92篇
  1996年   106篇
  1995年   137篇
  1994年   142篇
  1993年   74篇
  1992年   109篇
  1991年   55篇
  1990年   37篇
  1989年   98篇
  1988年   46篇
  1987年   50篇
  1986年   39篇
  1985年   118篇
  1984年   100篇
  1983年   82篇
  1982年   94篇
  1981年   128篇
  1980年   44篇
  1979年   40篇
  1978年   35篇
  1977年   26篇
  1976年   32篇
  1975年   28篇
  1974年   30篇
  1973年   25篇
  1972年   30篇
  1971年   23篇
排序方式: 共有5107条查询结果,搜索用时 31 毫秒
871.
An input filter is frequently employed between a switching regulator and its power source. However, its presence often results in degradation of dynamic performances and stability. The detrimental interaction is between an input filter and a switching regulator and is a function of the input filter parameters and also of the supply voltage. An earlier paper presented an analysis and design procedure aimed at developing a feed-forward loop to cancel this undesirable interaction. The feed-forward design is extended here to encompass a scheme that automatically accounts for changes in the supply voltage; the result is an adaptive compensation that tracks the input voltage variations. Experimental results are presented that confirm the adaptive nature of the design.  相似文献   
872.
The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled, and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation, and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i) gradual quantitative increasing of Lactobacillus sp. (from 10(3) to 10(5) colony forming units (CFU) per ml), (ii) activation of Clostridia sp. (from 10(2) to 10(4)CFU/ml), (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli.  相似文献   
873.
We report on extensive BVRcIc photometry and low-resolution (λ/Δλ250) spectroscopy of the deep-space debris WT1190F, which impacted Earth offshore from Sri Lanka, on 2015 November 13. In spite of its likely artificial origin (as a relic of some past lunar mission), the case offered important points of discussion for its suggestive connection with the envisaged scenario for a (potentially far more dangerous) natural impactor, like an asteroid or a comet.Our observations indicate for WT1190F an absolute magnitude Rc=32.45±0.31, with a flat dependence of reflectance on the phase angle, such as dRc/d?0.007±2?mag?deg?1. The detected short-timescale variability suggests that the body was likely spinning with a period twice the nominal figure of Pflash=1.4547±0.0005s, as from the observed lightcurve. In the BVRcIc color domain, WT1190F closely resembled the Planck deep-space probe. This match, together with a depressed reflectance around 4000 and 8500 Å may be suggestive of a “grey” (aluminized) surface texture.The spinning pattern remained in place also along the object fiery entry in the atmosphere, a feature that may have partly shielded the body along its fireball phase perhaps leading a large fraction of its mass to survive intact, now lying underwater along a tight (1×80?km) strip of sea, at a depth of 1500?m or less.Under the assumption of Lambertian scatter, an inferred size of 216±30/α/0.1?cm is obtained for WT1190F. By accounting for non-gravitational dynamical perturbations, the Area-to-Mass ratio of the body was in the range (0.006?AMR?0.011)?m2?kg?1.Both these figures resulted compatible with the two prevailing candidates to WT1190F’s identity, namely the Athena II Trans-Lunar Injection Stage of the Lunar Prospector mission, and the ascent stage of the Apollo 10 lunar module, callsign “Snoopy”. Both candidates have been analyzed in some detail here through accurate 3D CAD design mockup modelling and BRDF reflectance rendering to derive the inherent photometric properties to be compared with the observations.  相似文献   
874.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   
875.
This paper applies the Detached-Eddy Simulation (DES) method to resolve a larger part of the flow spectrum around rotor blades in hover and forward flight. A comparison between DES and Unsteady Reynolds–Averaged Navier–Stokes simulation was carried out for the case of a forward flying rotor suggesting that DES has great potential for rotor applications.  相似文献   
876.
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real-time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations.  相似文献   
877.
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications.  相似文献   
878.
The influence of various control systems of the orbital motion of a technological spacecraft on the level of microacceleration of its internal environment is simulated. Conclusions are drawn about the effectiveness of control systems with different actuators for realization of certain gravitationally sensitive processes onboard a spacecraft.  相似文献   
879.
The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.  相似文献   
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号