首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8079篇
  免费   42篇
  国内免费   30篇
航空   3616篇
航天技术   2823篇
综合类   30篇
航天   1682篇
  2021年   91篇
  2019年   61篇
  2018年   189篇
  2017年   136篇
  2016年   131篇
  2015年   59篇
  2014年   202篇
  2013年   250篇
  2012年   245篇
  2011年   376篇
  2010年   275篇
  2009年   402篇
  2008年   435篇
  2007年   263篇
  2006年   194篇
  2005年   220篇
  2004年   218篇
  2003年   244篇
  2002年   177篇
  2001年   251篇
  2000年   150篇
  1999年   179篇
  1998年   218篇
  1997年   142篇
  1996年   192篇
  1995年   229篇
  1994年   203篇
  1993年   135篇
  1992年   176篇
  1991年   56篇
  1990年   58篇
  1989年   162篇
  1988年   74篇
  1987年   70篇
  1986年   72篇
  1985年   217篇
  1984年   177篇
  1983年   132篇
  1982年   139篇
  1981年   236篇
  1980年   75篇
  1979年   54篇
  1978年   64篇
  1977年   45篇
  1975年   61篇
  1974年   47篇
  1973年   38篇
  1972年   41篇
  1971年   41篇
  1970年   40篇
排序方式: 共有8151条查询结果,搜索用时 11 毫秒
221.
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.  相似文献   
222.
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere.  相似文献   
223.
In this paper, we present an algorithm for geometrically nonlinear finite element analysis of the shells of revolution. Use is made of the most proper algorithms for vector interpolation of displacements through the nodal unknowns and an efficient algorithm for obtaining the stress-strain increment relation at a step of loading. By comparing the results of analyzing a geometrically nonlinear shell of revolution obtained on the basis of the ANSYS software with the scalar interpolation of displacements with those obtained on the basis of an author-developed finite element, it has been shown that application of the FEM vector displacement interpolation leads to increasing the accuracy of the finite element solutions in analyzing the stress-strain state of the geometrically nonlinear shells.  相似文献   
224.
225.
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission.  相似文献   
226.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   
227.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   
228.
This paper considers issues of designing a gas-turbine engine in the helicopter system at the early design stages. The optimum and rational values of engine working process parameters at different flight speeds of the flight vehicle (FV) are analyzed. Several characteristics of mathematical models (MM) that form the helicopter–engine system, are described.  相似文献   
229.
The paper adduces the relators for algebraic operations on graphs using the numeric codes of the graphs. The special algebra of codes has been devised with consideration of the principles of graph transformation. This paper demonstrates the relevance of numeric coding of graphs for solving the problems of enumeration, systematization, and compact representation of the information about the structural and functional characteristics of the systems of flow distribution and conversion of rocket and space technology and for conducting the modeling transformations of given systems in the course of the structural and functional studies as well.  相似文献   
230.
The paper discusses a method of designing the neural controller for two-channel control of a technical object by an example of the roll and yaw control depending on deviations, velocities and accelerations of their variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号