首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2460篇
  免费   29篇
  国内免费   12篇
航空   979篇
航天技术   907篇
综合类   12篇
航天   603篇
  2022年   13篇
  2021年   27篇
  2019年   24篇
  2018年   73篇
  2017年   61篇
  2016年   49篇
  2015年   20篇
  2014年   78篇
  2013年   91篇
  2012年   71篇
  2011年   137篇
  2010年   102篇
  2009年   145篇
  2008年   148篇
  2007年   77篇
  2006年   63篇
  2005年   76篇
  2004年   78篇
  2003年   81篇
  2002年   56篇
  2001年   75篇
  2000年   39篇
  1999年   47篇
  1998年   52篇
  1997年   49篇
  1996年   41篇
  1995年   56篇
  1994年   34篇
  1993年   38篇
  1992年   50篇
  1991年   13篇
  1990年   16篇
  1989年   41篇
  1988年   19篇
  1987年   16篇
  1986年   13篇
  1985年   60篇
  1984年   51篇
  1983年   41篇
  1982年   41篇
  1981年   56篇
  1980年   34篇
  1979年   16篇
  1978年   17篇
  1977年   9篇
  1976年   16篇
  1975年   15篇
  1974年   12篇
  1971年   7篇
  1969年   7篇
排序方式: 共有2501条查询结果,搜索用时 15 毫秒
181.
Babkin  E. V.  Belyaev  M. Yu.  Efimov  N. I.  Sazonov  V. V.  Stazhkov  V. M. 《Cosmic Research》2004,42(2):155-164
A comparison of two methods of determination of the microacceleration quasisteady component arising onboard the International Space Station was performed. In the first method the acceleration was calculated using the relative motion of the station reconstructed on the basis of telemetry data. The second method was a direct measurement of the microacceleration by a low-frequency accelerometer and a smoothing of the data obtained. The used measurements were made by the American accelerometer MAMS. The above comparison can theoretically be used to refine the position of the station center of mass relative to its body.  相似文献   
182.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
183.
针对某ZL205A合金舱体铸件壁薄难充型、壁厚差异大、易产生裂纹等特点,设计了低压底注式浇注工艺。采用立筒缝隙式浇注系统分配充型过程中合金的流量,局部厚大部位放置成形冷铁加快该部位的冷却速度,以控制铸造缺陷的产生。利用ProCast数值仿真软件对工艺进行仿真计算,成功预测了缺陷的产生位置,对工艺方案进行优化,包括倒角过渡、改变型砂使用等,并在优化方案的基础上浇注了舱体铸件,铸件质量良好,没有缩松、缩孔、裂纹等缺陷,符合相关技术要求。  相似文献   
184.
作为未来航天器智能化的发展方向,在轨任务规划的实现是一项涉及多个领域知识的复杂软件工程问题,需要与之匹配的先进开发方法。本文基于动态语言和嵌入式操作系统,提出了一种在轨任务规划的开发方法;从需求出发,调研了一组适用于在轨任务规划应用的开源基础库,涉及航天器任务规划、地理信息数据库、地图投影、坐标变换、几何拓扑关系求解、线性规划等多个方面;将这些领域的典型开源库作为中间件移植到高性能星载计算机和嵌入式操作系统上,并进行了功能测试。本文的工作能给后续在轨任务规划系统的设计和实现提供启发和帮助。  相似文献   
185.
For estimating radiation risk in space flights it is necessary to determine radiation dose obtained by critical organs of a human body. For this purpose the experiments with human body models are carried out onboard spacecraft. These models represent phantoms equipped with passive and active radiation detectors which measure dose distributions at places of location of critical organs. The dosimetric Liulin-5 telescope is manufactured with using three silicon detectors for studying radiation conditions in the spherical tissue-equivalent phantom on the Russian segment of the International space station (ISS). The purpose of the experiment with Liulin-5 instrument is to study dynamics of the dose rate and particle flux in the phantom, as well as variations of radiation conditions on the ISS over long time intervals depending on a phase of the solar activity cycle, orbital parameters, and presence of solar energetic particles. The Liulin-5 dosimeter measures simultaneously the dose rate and fluxes of charged particles at three depths in the radial channel of the phantom, as well as the linear energy transfer. The paper presents the results of measurements of dose rate and particle fluxes caused by various radiation field components on the ISS during the period from June 2007 till December 2009.  相似文献   
186.
The results of the satellite low-latitude and mid-latitude measurements of the disturbed plasma concentration, electron temperature, and quasi-stable electric field at heights of ~900 km after sunset are discussed. It is shown that the sharp fronts of changes in the electron temperature and plasma density observed in the experiment onboard the Intercosmos-Bulgaria-1300 satellite in the low-latitude (and equatorial) outer ionosphere can be related to damping of the oscillations of plasma electrons at local decreases of the plasma density (plasma “pits”) and formation of the vortex plasma structures at density and temperature gradients, which promotes conservation of ionosphere irregularities and makes the fronts of concentration variations steeper. Nonmonotonic variations in the plasma conductivity for the ionosphere currents in unstable plasma can be a cause of observed nonmonotonic disturbances of the vertical component of the “constant” electric field.  相似文献   
187.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   
188.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.  相似文献   
189.
The results of updating the parameters of motion of the Spektr-R spacecraft at the end of 2016 have shown that, in January 2018, with a probability close to unity, the condition that a spacecraft stay in the Earth’s shadow is violated; however, in May of the same year, the ballistic life of the spacecraft will be terminated. Thus, in 2017, the question arose of how to design the correction of flight of this spacecraft using its onboard propulsion system. The correction was designed with allowance for the fact that, for the first time since it was launched, the spacecraft in the course of several years, beginning with 2017, repeatedly approaches the Moon, deeply immersing into its sphere of influence. This paper presents the technologically and organizationally convenient, allowable versions of upcoming correction of the Spektr-R spacecraft trajectory and justifies the particular scheme of its implementation.  相似文献   
190.
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号