首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5401篇
  免费   50篇
  国内免费   18篇
航空   2544篇
航天技术   1869篇
综合类   24篇
航天   1032篇
  2021年   52篇
  2019年   46篇
  2018年   116篇
  2017年   95篇
  2016年   81篇
  2015年   40篇
  2014年   133篇
  2013年   150篇
  2012年   140篇
  2011年   223篇
  2010年   167篇
  2009年   248篇
  2008年   294篇
  2007年   146篇
  2006年   124篇
  2005年   149篇
  2004年   144篇
  2003年   181篇
  2002年   115篇
  2001年   183篇
  2000年   100篇
  1999年   124篇
  1998年   145篇
  1997年   110篇
  1996年   123篇
  1995年   168篇
  1994年   129篇
  1993年   89篇
  1992年   128篇
  1991年   44篇
  1990年   54篇
  1989年   120篇
  1988年   59篇
  1987年   52篇
  1986年   46篇
  1985年   145篇
  1984年   126篇
  1983年   109篇
  1982年   114篇
  1981年   140篇
  1980年   57篇
  1979年   42篇
  1978年   43篇
  1977年   35篇
  1976年   35篇
  1975年   48篇
  1974年   34篇
  1973年   24篇
  1972年   38篇
  1971年   23篇
排序方式: 共有5469条查询结果,搜索用时 109 毫秒
71.
A quartz sensor of small accelerations with a capacitive transducer is designed and produced, allowing one to measure spacecraft accelerations with a resolution of 10–7 m/s2 in the range ±10–1 m/s2. The results of calibration of the sensor by the method of inclinations are presented.  相似文献   
72.
This article studies the efficiency of ejecting waste generated by the life support system (LSS) of a manned spacecraft to reduce initial mass on low earth orbit. The spacecraft is used for a long-duration interplanetary mission and is equipped with either a chemical or a nuclear-thermal propulsion system. For this study we simulate an optimal control problem for a given spacecraft maneuver. An impulsive approximation of the optimal interplanetary spacecraft trajectory is assumed, which allows us to reduce the general optimal control problem to hierarchic structure of 'outer' and 'inner' subproblems. This structure is analyzed using the Pontryagin's Maximum principle. Numerical results, illustrating the efficiency of waste ejection are shown for typical Earth-Mars transfer trajectories. This results confirm in theory that using a waste ejection system makes an early manned Mars mission possible without having to design and build new, advanced biological LSS.  相似文献   
73.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   
74.
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future.  相似文献   
75.
In 1994–1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   
76.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.  相似文献   
77.
In 1994-1995 Lavochkin Association (Russia) together with the other enterprises in accordance with technical requirements of the Russian Space agency, developed a new Russian communication satellite of a small class that will operate in both the geostationary (GSO) and high-elliptical (HEO) orbits. This satellite may be injected into operational orbits using a SOYUZ-2 launch vehicle (LV) and a FREGAT upper stage (US) from Plesetsk and Baykonur space launch sites (SLS).The main reason for creating such a satellite was to decrease the cost of the support and development of the Russian communication geostationary satellites group.Russian satellites Horizont, Express, Ekran and Gals, which operate in GSO, are the basis of the space segment for communications, radio and TV broadcasting. All of these satellites are injected into GSO by the PROTON LV. PROTON is a launch vehicle of a heavy class. The use of a middle class LV instead of a heavy class will allow to reduce considerably the launch cost. The change of a heavy class LV to a LV of middle class determined one economic reason for this project. Besides, the opportunity to launch S/C into GSO from Russian Plesetsk SLS increases the independence of Russia in the domain of space communications, despite the presence of the contract with Kazachstan about the rent of Baykonur SLS. Finally, use of small satellites with a rather small number of transponders is more effective than the use of big satellites. It will allow also to increase a satellite group (by the launch of additional satellites) precisely in accordance to the development of the ground segment.  相似文献   
78.
The widely distributed nature of the Space Station Freedom program, plus continuous multi-year operations will force program planners to develop innovative planning concepts. The traditional centralized planning operation will not be adequate. It will be replaced by multiple small planning centers working within guidelines issued by a central planning authority. Plans will not be optimized; rather, operating efficiency and user flexibility will be blended to satisfy program goals. The key to this new approach is the application of new planning methodologies and system development technologies to accommodate distributed resources that must be integrated. Resources will be distributed to the multiple planning entities in such a way that, when the several plans are built and then integrated, they will fit together with minimal modification. The plan itself will be an envelope schedule containing resource limits and constraint boundaries within which users will be free to make choices of the specific activities they will execute, up to the time of execution. Some level of margin within program guidelines will be built in to allow for variation and unforeseen change. This paper presents the authors' recommended planning approach and cites two NASA systems being developed that will utilize these resource distribution/integration planning concepts, methodologies and development technologies.  相似文献   
79.
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
80.
The Ariane transfer vehicle (ATV), an Ariane 5 borne, unmanned propulsion vehicle, is designed to transport the logistics needed to resupply the International Space Station (ISS) and the man tended free flyer (MTFF) step 2 with pressurized and unpressurized cargo and to dispose the waste. The ATV is an expendable vehicle and is disposed of by a safe atmospheric burn up. In accordance with the AR5 schedule it should be operational in 1996 for missions toward ISS and beyond the year 2000 for MTFF 2 missions. The main constituents of the proposed ATV are the modified AR5 third stage L5, an upgraded VEB steering the launcher as well as the ATV and the P/L-adaptor providing mechanical and umbilical links to the payload. The mechanical part of the RVD-kit will be placed on the payload-module, the main RVD sensors are located on the adaptor and the needed computer intelligence will be integrated on the VEB. To minimize the development, and recurring costs, the ATV concept fully complies to the idea of maximum use of existing hardware and software, mainly from the AR5, Hermes and Columbus programs thus minimizing development and recurring costs. The ATV is compatible to ISS, MTFF and OMV and is able to transport logistic modules compatible with NSTS and U.S.-expendable launchers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号