全文获取类型
收费全文 | 2461篇 |
免费 | 29篇 |
国内免费 | 12篇 |
专业分类
航空 | 979篇 |
航天技术 | 908篇 |
综合类 | 12篇 |
航天 | 603篇 |
出版年
2022年 | 13篇 |
2021年 | 27篇 |
2019年 | 24篇 |
2018年 | 73篇 |
2017年 | 61篇 |
2016年 | 49篇 |
2015年 | 20篇 |
2014年 | 78篇 |
2013年 | 92篇 |
2012年 | 71篇 |
2011年 | 137篇 |
2010年 | 102篇 |
2009年 | 145篇 |
2008年 | 148篇 |
2007年 | 77篇 |
2006年 | 63篇 |
2005年 | 76篇 |
2004年 | 78篇 |
2003年 | 81篇 |
2002年 | 56篇 |
2001年 | 75篇 |
2000年 | 39篇 |
1999年 | 47篇 |
1998年 | 52篇 |
1997年 | 49篇 |
1996年 | 41篇 |
1995年 | 56篇 |
1994年 | 34篇 |
1993年 | 38篇 |
1992年 | 50篇 |
1991年 | 13篇 |
1990年 | 16篇 |
1989年 | 41篇 |
1988年 | 19篇 |
1987年 | 16篇 |
1986年 | 13篇 |
1985年 | 60篇 |
1984年 | 51篇 |
1983年 | 41篇 |
1982年 | 41篇 |
1981年 | 56篇 |
1980年 | 34篇 |
1979年 | 16篇 |
1978年 | 17篇 |
1977年 | 9篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1974年 | 12篇 |
1971年 | 7篇 |
1969年 | 7篇 |
排序方式: 共有2502条查询结果,搜索用时 86 毫秒
71.
V D Kern S Bhattacharya R N Bowman F M Donovan C Elland T F Fahlen B Girten M Kirven-Brooks K Lagel G B Meeker O Santos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1023-1030
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners. 相似文献
72.
N S Pechurkin I M Shirobokova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1497-1504
Closed Artificial ecosystems (CAES) have good prospects for wide use as new means for quantitative studies of different types of both natural ecosystems and man-made ones. The paper deals with the discussion of three points of CAES applications. The first one is of importance for theoretical ecology development and is connected with bringing together "holistic" and "merological" approaches in ecosystems studies. Using CAES, we can combine both approaches, taking into account the biotic turnover of limiting substrates which few in number even for complicated natural ecosystems. The second CAES use concerns the development of "ecosystems health" concept and application of a key-factor-approach for the indication and measurement of healthy unhealthy state and functioning of ecosystems or their links. The third use is more of an applied nature, oriented to the intensification of bioremediation or biodepollution processes in different types of ecosystems, including the global biosphere. Grant numbers: N 99-04-96017, N25. 相似文献
73.
Development of thermal sensors and drilling systems for lunar and planetary regoliths 总被引:1,自引:0,他引:1
N.I. Kömle E. Kaufmann G. Kargl Yang Gao Xu Rui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed. 相似文献
74.
T.I. Pisman N.S. Pechurkin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):773-776
The study addresses interaction of bacteria and phages in the host–parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of Brevibacterium – Brevibacterium sp. 22L – and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.
- 1.
- Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become “a bad host” for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all. 相似文献
75.
M. Amenomori S. Ayabe X.J. Bi D. Chen S.W. Cui Danzengluobu L.K. Ding X.H. Ding C.F. Feng Zhaoyang Feng Z.Y. Feng X.Y. Gao Q.X. Geng H.W. Guo H.H. He M. He K. Hibino N. Hotta Haibing Hu H.B. Hu J. Huang Q. Huang H.Y. Jia F. Kajino K. Kasahara Y. Katayose C. Kato K. Kawata Labaciren G.M. Le A.F. Li J.Y. Li Y.-Q. Lou H. Lu S.L. Lu X.R. Meng K. Mizutani J. Mu K. Munakata A. Nagai H. Nanjo M. Nishizawa M. Ohnishi I. Ohta H. Onuma T. Ouchi S. Ozawa J.R. Ren T. Saito T.Y. Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
76.
J.-C. Liou N.L. Johnson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(7):1046-1053
Several studies conducted during 1991–2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay. 相似文献
77.
K. Yoshimura K. Abe H. Fuke S. Haino T. Hams M. Hasegawa A. Horikoshi K.C. Kim T. Kumazawa A. Kusumoto M.-H. Lee Y. Makida S. Matsuda Y. Matsukawa J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki R. Orito J.F. Ormes K. Sakai M. Sasaki E.S. Seo Y. Shikaze R. Shinoda R.E. Streitmatter J. Suzuki K. Takeuchi N. Thakur K. Tanaka T. Yamagami A. Yamamoto T. Yoshida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
78.
J. Dodion D. Fussen F. Vanhellemont C. Bingen N. Mateshvili K. Gilbert R. Skelton D. Turnbull S.D. McLeod C.D. Boone K.A. Walker P.F. Bernath 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Satellite-based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. PSCs are of fundamental importance for the formation of the Antarctic ozone hole that occurs every year since the early 1980s in Southern Hemisphere spring. Despite progress in the observation, modeling and understanding of PSCs in recent years, there are still important questions which remain to be resolved, e.g. PSC microphysics, composition, formation mechanisms and long-term changes in occurrence. In addition, it has recently become clear that cirrus clouds significantly affect the global energy balance and climate, due to their influence on atmospheric thermal structure. 相似文献
79.
T.A. Borisova N.V. Krisanova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
High-affinity Na+-dependent glutamate transporters of the plasma membrane mediate the glutamate uptake into neurons, and thus maintain low levels of extracellular glutamate in the synaptic cleft. The study focused on the release of glutamate by reversal of Na+-dependent glutamate transporters from rat brain nerve terminals (synaptosomes) under conditions of centrifuge-induced hypergravity. Flow cytometric analysis revealed similarity in the size and cytoplasmic granularity between synaptosomal preparations obtained from control and G-loaded animals (10 G, 1 h). The release of cytosolic l-[14C]glutamate from synaptosomes was evaluated using the protonophore FCCP, which dissipated synaptic vesicle proton gradient, thus synaptic vesicles were not able to keep glutamate inside and the latter enriched cytosol. FCCP per se induced the greater release of l-[14C]glutamate in hypergravity as compared to control (4.8 ± 1.0% and 8.0 ± 1.0% of total label). Exocytotic release of l-[14C]glutamate evoked by depolarization was reduced down to zero after FCCP application under both conditions studied. Depolarization stimulated release of cytosolic l-[14C]glutamate from synaptosomes preliminary treated with FCCP was considerably increased from 27.0 ± 2.2% of total label in control to 35.0 ± 2.3% in hypergravity. Non-transportable inhibitor of glutamate transporter dl-threo-β-benzyloxyaspartate was found to significantly inhibit high-KCl and FCCP-stimulated release of l-[14C]glutamate, confirming the release by reversal of glutamate transporters. The enhancement of transporter-mediated release of glutamate in hypergravity was found to result at least partially from the inhibition of the activity of Na/K-ATPase in the plasma membrane of synaptosomes. We suggested that hypergravity-induced alteration in transporter-mediated release of glutamate indicated hypoxic injury of neurons. 相似文献
80.
V.D. Kuznetsov I.I. Sobelman I.A. Zhitnik S.V. Kuzin Yu.D. Kotov Yu.E. Charikov S.N. Kuznetsov E.P. Mazets A.A. Nusinov A.M. Pankov J. Sylwester 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined. 相似文献