首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2462篇
  免费   29篇
  国内免费   12篇
航空   979篇
航天技术   908篇
综合类   12篇
航天   604篇
  2022年   13篇
  2021年   27篇
  2019年   24篇
  2018年   73篇
  2017年   61篇
  2016年   49篇
  2015年   20篇
  2014年   78篇
  2013年   92篇
  2012年   71篇
  2011年   137篇
  2010年   102篇
  2009年   145篇
  2008年   148篇
  2007年   77篇
  2006年   63篇
  2005年   77篇
  2004年   78篇
  2003年   81篇
  2002年   56篇
  2001年   75篇
  2000年   39篇
  1999年   47篇
  1998年   52篇
  1997年   49篇
  1996年   41篇
  1995年   56篇
  1994年   34篇
  1993年   38篇
  1992年   50篇
  1991年   13篇
  1990年   16篇
  1989年   41篇
  1988年   19篇
  1987年   16篇
  1986年   13篇
  1985年   60篇
  1984年   51篇
  1983年   41篇
  1982年   41篇
  1981年   56篇
  1980年   34篇
  1979年   16篇
  1978年   17篇
  1977年   9篇
  1976年   16篇
  1975年   15篇
  1974年   12篇
  1971年   7篇
  1969年   7篇
排序方式: 共有2503条查询结果,搜索用时 15 毫秒
81.
82.
The paper summarizes the data on proliferation and gravity-related gene expression of osteoblasts that were obtained from an experiment conducted under simulated and real microgravity conditions. Simulated microgravity conditions obtained in a clinostat depress proliferation of both osteoblast-like MC3T3-E1 and HeLa carcinoma cells. This depression of proliferation occurs in a collagen gel culture in which the flow of culture medium by rotation may be reduced. Interestingly, MC3T3-E1 cells which are probably one of target cells to microgravity are more sensitive than the HeLa cells. Simulated microgravity inhibited the epidermal growth factor (EGF)-induced c-fos gene expression in the MC3T3-El cells. To examine in detail the effect of real microgravity on the EGF signal transduction cascade in osteoblasts, MC3T3-E1 cells were cultured in the Cell Culture Experiment Module of the sounding rocket TR-1A6. The EGF-induced c-fos expression in cells was depressed under short-term microgravity conditions in the sounding rocket, while the phosphorylation of mitogen-activated protein kinase (MAPK) was not affected compared with the controls grown on the ground. These results suggest that an action site of microgravity in the signal transduction pathway may be downstream of MAPK.  相似文献   
83.
Titan, the largest satellite of Saturn, with a dense atmosphere very rich in organics, and many couplings in the various parts of its "geofluid", is a reference for studying prebiotic chemistry on a planetary scale. New data have been obtained from experiments simulating this organic chemistry (gas and aerosol phases), within the right ranges of temperature and a careful avoiding of any chemical contamination. They show a very good agreement with the observational data, demonstrating for the first time the formation of all the organic species already detected in Titan atmosphere including, at last, C4N2, together with many other species not yet detected in Titan. This strongly suggests the presence of more complex organics in Titan's atmosphere and surface, including high molecular weight polyynes and cyanopolyynes. The NASA-ESA Cassini-Huygens mission has been successfully launched in October 1997. The Cassini spacecraft will reach the Saturn system in 2004 and become an orbiter around Saturn, while the Huygens probe will penetrate into Titan's atmosphere. In situ measurements, in particular from Huygens GC-MS and ACP instruments, will provide a detailed analysis of the organics present in the air, aerosols, and surface. This very ambitious mission should yield much information of crucial importance for our knowledge of the complexity of Titan's chemistry, and, more generally for the field of exobiology.  相似文献   
84.
We analyse the effects of semi-convection and overshooting on the predicted surface abundances after the first and second dredge-ups in 15 and 20 M Pop. I stars. Overshooting is applied either to the core boundary or to the boundaries of all convective zones. It is shown that the surface abundances are sensitive to the mixing scheme adopted in the interior. The models including semi-convection lead to lower12C/13C ratios than the other mixing schemes, while models with overshooting predict higher enhancements of sodium at the surface.  相似文献   
85.
Taking as example a 60M star of solar metallicity, the state of the art of model calculations for very massive, from the main sequence to the supernova stage, is reviewed. It is argued that — due to the simple internal structure of Wolf-Rayet stars — the post main sequence evolutionary phases are currently those which are better understood. A brief discussion of the supernova outcome from very massive stars is given. Then, the more uncertain main sequence evolution is discussed. A first attempt to incorporate results about pulsational instabilities of very massive stars in stellar evolutionary calculations is performed. On its basis, a new type of evolutionary sequence for very massive stars is obtained, namely O-star → Of-star → H-rich WNL → LBV → H-poor WNL → WNE → WC → SN. This scenario is shown to correspond better to many observed properties of very massive stars than the standard one. It includes a model for the prototype LBV P Cygni.  相似文献   
86.
本文介绍了俄国1420,1430,1450等铝锂合金的研制过程和性能,并与西方类似合金进行了对比,同时还列举了铝锂合金在战斗机、运输机、民航机和直升机上作为结构元件和应用情况。  相似文献   
87.
The paper presents a technique of forming and evaluating the allowable clearance between a launch vehicle fairing and spacecraft.  相似文献   
88.
The discretization of the boundary value problem for laminated composite shells is based on the finite difference approach using the regular mesh with the constant grid step and the difference operators of the second order of accuracy. The dynamic relaxation method is proposed for the solution of the nonlinear problem. The evolutionary equations of the dynamic relaxation are constructed, and the optimum parameters of the converging linear iterative process are estimated.  相似文献   
89.
Lauretta  D. S.  Balram-Knutson  S. S.  Beshore  E.  Boynton  W. V.  Drouet d’Aubigny  C.  DellaGiustina  D. N.  Enos  H. L.  Golish  D. R.  Hergenrother  C. W.  Howell  E. S.  Bennett  C. A.  Morton  E. T.  Nolan  M. C.  Rizk  B.  Roper  H. L.  Bartels  A. E.  Bos  B. J.  Dworkin  J. P.  Highsmith  D. E.  Lorenz  D. A.  Lim  L. F.  Mink  R.  Moreau  M. C.  Nuth  J. A.  Reuter  D. C.  Simon  A. A.  Bierhaus  E. B.  Bryan  B. H.  Ballouz  R.  Barnouin  O. S.  Binzel  R. P.  Bottke  W. F.  Hamilton  V. E.  Walsh  K. J.  Chesley  S. R.  Christensen  P. R.  Clark  B. E.  Connolly  H. C.  Crombie  M. K.  Daly  M. G.  Emery  J. P.  McCoy  T. J.  McMahon  J. W.  Scheeres  D. J.  Messenger  S.  Nakamura-Messenger  K.  Righter  K.  Sandford  S. A. 《Space Science Reviews》2017,212(1-2):925-984

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  相似文献   
90.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号