首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2169篇
  免费   4篇
  国内免费   6篇
航空   752篇
航天技术   762篇
综合类   8篇
航天   657篇
  2022年   6篇
  2021年   22篇
  2019年   7篇
  2018年   73篇
  2017年   58篇
  2016年   56篇
  2015年   20篇
  2014年   69篇
  2013年   68篇
  2012年   66篇
  2011年   109篇
  2010年   80篇
  2009年   125篇
  2008年   144篇
  2007年   81篇
  2006年   51篇
  2005年   66篇
  2004年   70篇
  2003年   83篇
  2002年   53篇
  2001年   90篇
  2000年   38篇
  1999年   41篇
  1998年   43篇
  1997年   34篇
  1996年   49篇
  1995年   40篇
  1994年   33篇
  1993年   20篇
  1992年   35篇
  1991年   9篇
  1990年   12篇
  1989年   34篇
  1988年   13篇
  1987年   18篇
  1986年   20篇
  1985年   67篇
  1984年   35篇
  1983年   25篇
  1982年   37篇
  1981年   66篇
  1980年   16篇
  1979年   6篇
  1978年   7篇
  1977年   13篇
  1976年   9篇
  1975年   14篇
  1974年   15篇
  1973年   8篇
  1970年   4篇
排序方式: 共有2179条查询结果,搜索用时 265 毫秒
111.
This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments – higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.  相似文献   
112.
The paper presents the research results of the effect of a capacitor energy storage device configuration on the specific characteristics of advanced modern propulsion systems based on the ablative pulsed plasma thrusters (APPT). These thrusters are designed to perform specific tasks within the small spacecrafts with the onboard power capacity up to 200 W.  相似文献   
113.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   
114.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   
115.
It is widely accepted that diffusive shock acceleration is an important process in the heliosphere, in particular in producing the energetic particles associated with interplanetary shocks driven by coronal mass ejections. In its simplest formulation shock acceleration is expected to accelerate ions with higher mass to charge ratios less efficiently than those with lower mass to charge. Thus it is anticipated that the Fe/O ratio in shock-accelerated ion populations will decrease with increasing energy above some energy. We examine the circumstances of five interplanetary shocks that have been reported to have associated populations in which Fe/O increases with increasing energy. In each event, the situation is complex, with particle contributions from other sources in addition to the shock. Furthermore, we show that the Fe/O ratio in shock-accelerated ions can decrease even when the shock is traveling through an Fe-rich ambient ion population. Thus, although shock acceleration of an Fe-rich suprathermal population has been proposed to explain large Fe-rich solar particle events, we find no support for this proposal in these observations.  相似文献   
116.
We have evaluated the Lyman-α limb emission from the exospheric hydrogen of Mars measured by the neutral particle detector of the ASPERA-3 instrument on Mars Express in 2004 at low solar activity (solar activity index = 42, F10.7=100). We derive estimates for the hydrogen exobase density, n H = 1010 m?3, and for the apparent temperature, T > 600 K. We conclude that the limb emission measurement is dominated by a hydrogen component that is considerably hotter than the bulk temperature at the exobase. The derived values for the exosphere density and temperature are compared with similar measurements done by the Mariner space probes in the 1969. The values found with Mars Express and Mariner data are brought in a broader context of exosphere models including the possibility of having two hydrogen components in the Martian exosphere. The present observation of the Martian hydrogen exosphere is the first one at high altitudes during low solar activity, and shows that for low solar activity exospheric densities are not higher than for high solar activity.  相似文献   
117.
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.  相似文献   
118.
Hard X-ray balloon altitude measurements with a 1600 cm2 phoswich array are described. Data from observations on Sco X-1, GX1+4, GX5−1, Nova Oph. 1977, SMC X-1, SS433, IC 4329A and MR 2251-178 are presented. The role of Comptonisation in X-ray production for Sco X-1 and GX1+4 is discussed.  相似文献   
119.
Results of the 2.5–5 micron spectroscopic channel of the IKS instrument on Vega are reported and the data reduction process is described. H2O and CO2 molecules have been detected with production rates of 1030 s−1 and 1.5 1028 s−1 respectively. Emission features between 3.3 and 3.7 microns are tentatively attributed to CH - bearing compounds - CO is marginally detected with a mixing ratio CO/H2O 0.2. OH emission and H2O - ice absorption might also be present in the spectra.  相似文献   
120.
解决了褶皱结构成形时相邻的平行四边形平面元素之间连接区棱的修圆半径值预测问题。把毛坯模拟成薄板,定义了平行四边形平面元素的边界条件,采用能量法导出挠度和力函数的非线性微分方程组,利用积分-差分法实现其数值解,并提供计算结果和分析应力-应变场。采用的计算方法可用于研究毛坯的刚度参数和工艺参数对褶皱结构的形状影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号