首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4477篇
  免费   8篇
  国内免费   6篇
航空   2090篇
航天技术   1605篇
综合类   16篇
航天   780篇
  2021年   44篇
  2019年   25篇
  2018年   104篇
  2017年   73篇
  2016年   76篇
  2015年   39篇
  2014年   130篇
  2013年   138篇
  2012年   143篇
  2011年   193篇
  2010年   127篇
  2009年   216篇
  2008年   293篇
  2007年   128篇
  2006年   107篇
  2005年   138篇
  2004年   117篇
  2003年   153篇
  2002年   89篇
  2001年   153篇
  2000年   74篇
  1999年   99篇
  1998年   120篇
  1997年   87篇
  1996年   90篇
  1995年   124篇
  1994年   121篇
  1993年   64篇
  1992年   95篇
  1991年   53篇
  1990年   36篇
  1989年   88篇
  1988年   40篇
  1987年   43篇
  1986年   37篇
  1985年   97篇
  1984年   86篇
  1983年   75篇
  1982年   86篇
  1981年   118篇
  1980年   41篇
  1979年   36篇
  1978年   32篇
  1977年   25篇
  1976年   28篇
  1975年   22篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1971年   21篇
排序方式: 共有4491条查询结果,搜索用时 0 毫秒
491.
492.
Atmospheric tides   总被引:3,自引:0,他引:3  
  相似文献   
493.
We review the main activities carried out at Moussala peak (2925 m above sea level, 42°11′N, 23°35′E) station in Bulgaria, connected with cosmic ray investigations during the last five decades. Several important results obtained at the station are reported. The detector design and corresponding methodological studies of the presently operational devices are shown as well, precisely the Cherenkov light telescope, lead free neutron monitor and muon telescope. The scientific potential of the existing complex is discussed.  相似文献   
494.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.  相似文献   
495.
    
The problem considered in this paper is the investigation of the properties of a mass-meter, i.e. the device for determining the mass of cosmonaut's body under zero-gravity conditions. The estimates of accuracy of mass measurement by this device are given, and the results of measuring the masses of cosmonauts' bodies on the Salyut 5 and 6 orbital stations are presented.  相似文献   
496.
Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The project had two major objectives: 1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration; and 2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in project planning, it was determined that the development of the Prometheus nuclear-powered spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This describes the key experiences in managing Prometheus, which should prove useful for future projects of similar scope and magnitude.  相似文献   
497.
    
Thermodynamics relations have been considered under which gas inclusions may form in melts (closed systems), due to both volatility of components and the presence of dissolved gases. It has been shown that in the melts with sufficient volatility of components, gas inclusions may form under equilibrium conditions if the ampoule is wetted well by the melt, whereas in case of low wettability they form under non-equilibrium state only. The foaming in the tellurium-selenium system has been analysed (“Pirin”, KP-4 experiment).In the melts containing dissolved gases, gas inclusions form under conditions of deviation from equilibrium and it is the main mechanism of outgassing. It has been demonstrated that the melt foaming method using hydrid compounds may be applied to the materials exhibiting a hysteresis of temperature dependence of diluted hydrogen concentration. Production of foam aluminium under zero gravity state has been considered as an example (“Pirin”, SP-3 experiment).  相似文献   
498.
    
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flown on-board the Mir orbital complex. The longest space mission duration was 366 days The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.  相似文献   
499.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.  相似文献   
500.
    
The BL Lac object Mkn 421 was observed by EXOSAT four times over a period of six days in February 1984. Significant X-ray variability was apparent on a timescale of less than a day, but with no accompanying spectral change. The source exhibited a very soft power law X-ray spectrum with an extremely low intrinsic column density (NH1020 cm–2). There was no evidence for an additional hard component attributable to synchrotron self-Compton emission. The observations when combined with other published data imply that significant changes occur in the form of the broad-band UV/X-ray continuum of this source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号